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Chapter 1

GENERAL INTRODUCTION

1.1 Background

Interest in the link between human activity and climate change is currently high,
however researchers today are only rediscovering an old concept. George Perkins
Marsh (1874) voiced his concern over the ability of man to alter the Earth’s cli-
mate, i.e. soil moisture, precipitation, temperature, and atmosphere by modifying
the surface vegetation and hydrologic regime through clearing, planting, irrigation,
and draining wetlands, but was unable to provide much data in support of his theory.
Thornthwaite (1956) recognized the importance of this hypothesis, and indicated the
causal conditions for climatological change, such as changes in the general circula-
tion of the atmosphere, variation in incoming radiation and changes in the Earth’s
features.
Nowadays there is strong evidence that human activity has disturbed the natural
climate, providing a remarkable acceleration in global warming, sea level rise, defor-
estation, and desertification. In order to monitor these environmental changes, there
is a distinct need for long term spatially distributed land surface data sets, like soil
moisture, soil temperature and vegetation.
Satellite remote sensing can be a powerful tool in fulfilling those needs, because it can
monitor and compute environmental processes in both spatial and temporal terms.
Since the early sixties, satellites have provided useful data for water resources man-
agement. During this period, visible and infrared were used to observe snow cover,
surface water areas, land use and surface temperature (Schmugge, 1985). However,
a major drawback of these instruments was their sensitivity to atmospheric contam-
inants. The occurrence of clouds and water vapor could easily disturb the signals,
resulting in limited land surface information.
In the seventies, some scientists started to discover the promising possibilities of
microwave instruments onboard of satellites. They observed that low frequency mi-
crowave signals penetrate clouds and are able to provide physical information of the
land surface.
In 1975 Wilheit developed one of the first radiative transfer models that described
the physics of microwave radiation in the soil. This important step in microwave re-
search started a series of papers on the possibilities of retrieving soil moisture through
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Chapter 1

microwave radiometry.
In 1977 Njoku and Kong described one of the first soil moisture models. These models
started to become more complex with a surface roughness model (Choudhury et al.,
1979), more sophisticated canopy layers (Kirdiashev et al., 1979; Mo et al., 1982), and
better dielectric mixing models (Wang and Schmugge, 1980; Dobson et al., 1985).
However, limitations in computing and lack of validation data frequently delayed
research progress. Now, 20 years later research in this field has evolved, resulting
in more physically based models (Njoku and Li, 1999; Owe et al., 2001). A couple
of years ago we were only able to estimate satellite derived soil moisture for a few
selected sites. However as demonstrated in this dissertation, we are now capable to
generate reliable global soil moisture data bases.

1.2 Thesis Objective and Approach

The primary objective of the present study is to develop a methodology to estimate
the land surface parameters soil moisture, soil temperature and vegetation optical
depth on a global basis by using passive microwave remote sensing. The methodology
should be general, in a way that it does not require any field observations of soil
moisture or canopy biophysical properties for calibration purposes, and that it can
be used with microwave observations at different wavelengths.
The study starts by first analyzing microwave theory. This analysis results in the
development of a simple physically based land surface retrieval model. The model is
tested on 5 test sites in the US and Eurasia and the resulting land surface parameters
are compared to field measurements and evaluated with an error propagation analysis.
The functionality of the model is tested by applying it to different wavelengths.
Finally the model is used on the global Nimbus/SMMR passive microwave data set
and various applications of the retrieved land surface parameters are discussed.

1.3 Thesis Outline

The thesis consists of a series of papers. However, in order to minimize redundancy,
and to give the thesis a more logical structure, some papers are revised and combined
to form a single chapter.
Chapter 1 provides a descriptive outline, general introduction to microwave remote
sensing, and thesis objective and approach. Chapter 2 provides a background in
passive microwave theory, and Chapter 3 gives a description of the data sets used
in the present study. The method used to derive soil temperatures is described in
Chapter 4, while the soil moisture and vegetation optical depth retrieval technique is
described and applied to 6.6 GHz observations in Chapter 5. Chapter 6 discusses the
limitations of the land surface parameter retrievals through error propagation analysis
and the implementation of a masking routine. Chapter 7 describes the application
of the methodology to higher frequency (18 GHz) data. Chapter 8 discusses the
potential applications of the land surface data sets, while Chapter 9 provides research
conclusions and offers suggestions for follow-on research.
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Chapter 2

MICROWAVE THEORY

2.1 Introduction

Passive microwave theory has been described in considerable detail by a number of
authors (e.g. Njoku and Kong, 1977; Ulaby et al., 1982, 1986). This section gives a
brief overview of the theory relevant to the present study.
Passive microwave remote sensing is based on the measurement of thermal radiation
from the land surface in the centimeter wave band, and is largely determined by
the physical temperature and the emissivity of the radiating body. The emitted
radiation in the microwave region (λ = 1-1000 mm) is extremely low as compared
with longwave infrared radiation (λ = 1-100 µm).
An approximation for the Planck equation, at low frequencies (f < 117 GHz), is the
Rayleigh-Jeans approximation, and can be shown to lead to

Tb(l) ≈ es(l)T (2.1)

Where l refers to either horizontal or vertical polarization, Tb is the observed mi-
crowave brightness temperature, T is the physical (thermodynamic) temperature of
the emitting layer, and es is the smooth-surface emissivity. If the assumption is
made that the dielectric constant in the soil has a smooth boundary and that the
temperature and surface moisture distributions are uniform, the reflectivity, R (where
R = 1− es), may be calculated from the Fresnel equation

RH =

∣∣∣∣∣
cosu−

√
ε− sin2 u

cosu+
√
ε− sin2 u

∣∣∣∣∣
2

(2.2)

and

RV =

∣∣∣∣∣
ε cosu−

√
ε− sin2 u

ε cosu+
√
ε− sin2 u

∣∣∣∣∣
2

(2.3)

where ε is the complex dielectric constant of a soil-water mixture (ε = ε′ + ε′′i), u is
the incidence angle of the sensor and V and H refer to the polarization of the emitted
radiation. To simplify the mathematics in this thesis, the complex dielectric constant
of the soil-water mixture will often be expressed as k, which is the absolute value of
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Figure 2.1: Comparison of horizontal and vertical polarized emissivity calculated for an
average soil at the SMMR wavelength and incidence angle with no canopy cover.

the dielectric constant (|ε| = k).
While the absolute magnitude of the soil emissivity is somewhat lower at horizontal
polarization, the sensitivity to changes in surface moisture is significantly greater
than at vertical polarization (See Figure 2.1). Conversely, at vertical polarization,
the sensitivity to surface temperature is greater. This subsequently forms the basis
for a surface temperature estimation procedure (Owe and Van de Griend, 2001),
which is later discussed in Chapter 4.

2.2 Dielectric Constant

The microwave region is the only part of the electromagnetic spectrum that permits
truly quantitative estimates of soil moisture using physically based expressions such
as radiative transfer models. Microwave technology is also the only remote sensing
method that measures a direct response to the absolute amount of water in the sur-
face soil.
The basis for microwave remote sensing of soil moisture follows from the large con-
trast in dielectric constant of dry soil (k ≈ 4) and water (k ≈ 80) and the resulting
dielectric properties of soil-water mixtures (k = 4-40) and their effect on the natural
microwave emission from the soil (Schmugge et al., 1986). The dielectric constant is
an electrical property of matter and is a measure of the response of a medium to an
applied electric field. The dielectric constant is a complex number, containing a real
(ε′) and an imaginary (ε′′) part. The real part determines the propagation charac-

– 4 –



Microwave Theory

teristics of the energy as it passes upward through the soil, while the imaginary part
determines the energy losses (Schmugge et al., 1986).
The dielectric constant is a difficult quantity to measure in the field. Moreover, repro-
ducing precise field conditions in laboratory soil samples makes laboratory analysis
of the dielectric constant not entirely straightforward. Consequently, the validation
of theoretical calculations is often somewhat difficult.
Dielectric models which are commonly used in theoretical calculations are the Dobson
Model (Dobson et al., 1985), a modified version of this model developed by Peplenski
et al. (1995) and the Wang-Schmugge Model (Wang and Schmugge, 1980).
In 1998 Owe and Van de Griend compared the Dobson and the W-S model and they
concluded that W-S model had better agreement with the laboratory dielectric con-
stant measurements. Consequently, for this study the W-S model was chosen and a
description of this model can be found in Appendix A.

2.3 Soil Physical Properties

In a non-homogeneous medium such as soil, the complex dielectric constant is a com-
bination of the individual dielectric constants of its components (i.e. air, water, rock,
etc.). In a soil medium, the dielectric constant is determined largely by the moisture
content, temperature, salinity, textural composition, and frequency.
The relationship between the soil dielectric constant and the moisture content is al-
most linear, except at low moisture contents (See Figure 2.2). This non-linearity at
low moisture contents is due to the strong bonds which develop between the surfaces
of the soil particles and the thin films of water which surround them. These bonds
are so strong at low moisture levels, that the free rotation of the water molecules is
impeded. This water is often referred to as bound water. Therefore, in a relatively
dry soil, the water is tightly bound and contributes little to the dielectric constant
of the soil water mixture.
As more water is added, the molecules are further from the particle surface and are
able to rotate more freely. This is referred to as the free water phase. The subsequent
influence of the free water on the soil dielectric constant therefore also increases.
Smaller particles such as irregular fine sands, silts, and clays have a higher surface
area-to-volume ratio and therefore are able to hold more water molecules at higher
potentials.
The unique plate-like structure of clays provides an additional source of high energy
bonds and increases the soil’s affinity for water.
Two soils with different textural composition may exhibit markedly different relation-
ships between moisture content and their respective soil dielectric constants. Soils
with a high clay content will generally have a lower dielectric constant than coarse
sandy soils at the same moisture content, since more water is being held in the bound
water phase (See Figure 2.2).
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Figure 2.2: Comparison of the soil dielectric constants for typical sand, loam, and clay
soils. The real part is designated by ε′ and the imaginary part by ε′′.

2.4 Thermal Sampling Depth

Microwave energy originates from within the soil, and the magnitude of any one soil
layer’s contribution decreases with depth. For practical purposes, the total thickness
of the surface layer which provides most of the measurable energy contribution is
defined as the thermal sampling depth (Schmugge and Choudhury, 1981). This term
is often confused with the skin depth or penetration depth.
Skin depth is defined as the depth over which the wave amplitude has attenuated
by a factor 1

e and penetration depth is the depth over which the power or intensity
is attenuated by a factor 1

e . The skin depth is half of the penetration depth (Ulaby
et al., 1982; Van Oevelen, 2000).
The sampling depth is influenced mainly by the total complex dielectric constant
discontinuity at the surface and the near surface dielectric constant gradient. For
a uniform dielectric profile with depth this is what determines the Fresnel reflec-
tion coefficients. The penetration depth on the other hand has more to do with the
imaginary part of the dielectric constant which leads to loss and attenuation in the
medium, thus determining the depth in the medium from which most of the radiation
originates that reaches the surface (E. Njoku, Pers. Comm.).
It is thought that the sampling depth is only several tenths of a wavelength (Schmugge,
1983).
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Figure 2.3: Horizontal polarized brightness temperature calculated for a range of roughness
values using Equation 2.4.

2.5 Surface Roughness

Surface roughness increases the apparent emissivity of natural surfaces, which is
caused by increased scattering due to the increase in surface area of the emitting
surfaces (Schmugge, 1985). Roughness also reduces the sensitivity of emissivity to
soil moisture variations, and thus reduces the range in measurable emissivity from
dry to wet soil conditions (Wang, 1983).
Furthermore, the path through the atmosphere between the surface and the sensor
depends on the elevation and also slope of the emitting surface. However this effect
is only significant at frequencies which are affected by atmospheric attenuation (>
10 GHz, Mätzler and Standley, 2000).
In 1959 Peake developed a theoretical approach to modify the reflectivity (es = 1−R)
for rough surfaces. This approach provided insight into scattering mechanism and re-
quired deriving expressions for the scattering coefficients. The scattering coefficients
could be estimated with two surface parameters, the height standard deviation and
the horizontal correlation length and many approaches to derive the theoretical ex-
pressions for emissivity have been developed using these two parameters (e.g. Fung
and Eom, 1981; Tsang and Newton, 1982; Tsang et al.,1985). Although they pro-
vided insight into the scattering mechanisms these expressions were not easy to use,
as they require detailed knowledge of the soil surface height and slope statistics, and
their computational accuracy is often limited in practical situations (Njoku and En-
tekhabi, 1996).
A simpler, empirical roughness model was developed by Choudhury et al. (1979), and
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is described as
er(l) = 1−R(l) exp(−h cos2 u) (2.4)

where er is the rough surface emissivity, h is an empirical roughness parameter, re-
lated to the root mean square (rms) height variation of the surface and the correlation
length, and u is the incidence angle of the observation.
Typical values for h have been suggested, ranging from 0 for a smooth surface, 0.3 for
a disked field, to 0.4 for a rough ploughed field. A more elaborate formulation, which
also included a polarization mixing parameter, has subsequently been proposed by
Wang and Choudhury (1981) . However, little work has since been conducted to
quantify the relative magnitudes of either the roughness parameter or the polariza-
tion mixing parameter. The effects of frequency and incidence angle on the roughness
parameter have also not been studied thoroughly.
The effect of roughness on the observed microwave brightness at 6.6 GHz for a range
of surface moistures is illustrated in Figure 2.3. A change in the roughness parameter
from 0 to 0.3 corresponds to a difference in the surface emissivity, of about 0.005 at
dry conditions, to about 0.014 at saturation.
There is some speculation that the effect of surface roughness is minimal in most
locations at satellite scales, except in areas of mountainous terrain or extreme relief.
Van de Griend and Owe (1994a) found that a surface roughness of 0 gave the lowest
rms errors in satellite-derived soil moisture over a southern African test site.

2.6 Vegetation Effects

The effects of vegetation on the microwave emission as measured from above the
canopy are two-fold. The vegetation may absorb or scatter the radiation emanating
from the soil, but it will also emit its own radiation. In areas of sufficiently dense
canopy, the emitted soil radiation will become masked, and the observed emissivity
will be due largely to the vegetation. The magnitude of the absorption by the canopy
depends upon the wavelength and the vegetation water content.
The most frequently used wavelengths for soil moisture sensing are in the L- and
C-bandwidths (λ ≈ 21 cm and 5 cm, respectively), although only L-band sensors
are able to penetrate vegetation of any significant density. While observations at all
frequencies are subject to scattering and absorption and require some correction if
the data are to be used for soil moisture retrieval, shorter wave bands are especially
susceptible to vegetation influences.
Numerous canopy models have been developed to account for the effects of vegeta-
tion (Kirdiashev et al., 1979; Mo et al., 1982; Ulaby et al., 1986; Theis and Blanchard,
1988). For this study the model of Mo et al. (1982) is used because this model has
proven to be a simple but physically based model that can effectively estimate the ra-
diation by the soil surface even under vegetation (Van Oevelen, 2000). The upwelling
radiation from the land surface as observed from above the canopy may be expressed
in terms of the brightness temperature, Tb, and is given as a simple radiative transfer
equation (Mo et al., 1982),

Tb(l) = Tser(l)Γ(l) + (1− ω(l))Tc(1− Γ(l)) + (1− er(l))(1− ω(l))Tc(1− Γ(l))Γ(l) (2.5)
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Γ = Transmissivity of the vegetation, er = Rough surface emissivity, Ts = Surface temperature,
ω = Single scattering albedo, and Tc = Canopy temperature.

Figure 2.4: Schematic representation of the partitioning of microwave radiation from a
vegetation covered surface in terms of the brightness temperature (From Van de Griend and
Owe (1993)).

Where Ts and Tc are the thermometric temperatures of the soil and the canopy
respectively, ω is the single scattering albedo, and Γ the transmissivity of the canopy.
The first term of the above equation defines the radiation from the soil as attenuated
by the overlying vegetation.
The second term accounts for the upward radiation directly from the vegetation,
while the third term defines the downward radiation from the vegetation, reflected
upward by the soil and again attenuated by the canopy. These three terms are
summarized in Figure 2.4. The transmissivity (Γ) is defined in terms of the optical
depth τ , such that

Γ(l) = exp
−τ(l)
cosu

(2.6)

The canopy optical depth is related to the vegetation density and the frequency. For
frequencies less than 10 GHz, it has been shown to be a linear function of vegetation
water content. Typical values of τ for agricultural crops have generally been given
as less than one (Mo et al., 1982; Jackson and O’Neill, 1990a).
Theoretical calculations show that the sensitivity of above-canopy brightness temper-
ature measurements to variations in soil emissivity decreases with increasing optical
depth or canopy thickness (Ulaby et al., 1986). This is because the soil emission is
attenuated by the canopy and emission from the vegetation canopy tends to saturate
the signal with increasing optical depth. This subsequently results in decreased sen-
sor sensitivity to soil moisture variations.
A transmissivity of 1 corresponds to an optical depth of 0, indicating bare soil, or at
least no attenuation of the soil-emitted radiation due to an overlying canopy. Con-
versely, a transmissivity of 0 indicates an infinitely thick canopy, with no penetration
of the soil emission through the canopy.
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Figure 2.5: The effect of the vegetation optical depth on the emissivity. At H-polarization,
the sensitivity of the above canopy emissivity is severly reduced at an optical depth of about
0.75 (Γ = 0.3).

It is also shown in Figure 2.5, that at C-band, the above-canopy signal becomes to-
tally saturated at an optical depth of about 1.5 in the horizontal channel, although
for practical purposes, the sensitivity of C-band measurements to optical depth vari-
ations significantly decreases when the optical depth is higher than 0.75. Under
dry conditions, this threshold occurs even sooner. The relationships between other
indicators of vegetation biomass or canopy density, such as leaf area index (LAI),
vegetation water content (VWC), Microwave Polarization Difference Index (MPDI)
and Normalized Difference Vegetation Index (NDVI) have been reported in a variety
of studies (Becker and Choudhury, 1988; Holben et al., 1980; Tucker et al., 1980),
but are largely empirical in nature. Theoretical calculations indicate that at C-band,
sensitivity to changes in surface moisture conditions ceases at a maximum VWC of
approximately 1.5 kg m−2 (Njoku and Li, 1999).
The single scattering albedo describes the scattering of the emitted radiation by the
vegetation. The scattering albedo is a function of plant geometry, and consequently
varies according to plant species and associations. Experimental data for this pa-
rameter are limited, and values for selected crops have been found to vary from
0.04 to about 0.12 (Brunfeldt and Ulaby, 1984; Jackson and O’Neill, 1990b; Mo et
al., 1982). Values for natural vegetation are even more scarce, although Becker and
Choudhury (1988) estimated a value of 0.05 for a semi-arid region in Africa. Van
de Griend and Owe (1994b) calculated a 3-year time series of both scattering albedo
and vegetation optical depth at both 6.6 GHz and 37 GHz for savanna surfaces in
Botswana.
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Figure 2.6: The effect of the single scattering albedo on the soil moisture brightness
temperature relationship.

The optical depth displayed a distinct seasonal course at both frequencies, although
the values for 37 GHz were significantly higher. While the scattering albedo demon-
strated considerable variability during the 3-year period, a relationship with vegeta-
tion biomass or other seasonal indicators was not observed. An average value for the
scattering albedo of 0.076 was found for both frequencies. The effect of the scatter-
ing albedo on the observed brightness temperature-surface moisture relationship is
illustrated in Figure 2.6, over a range of values reported in the literature.
The influence of polarization on the optical depth and the scattering albedo has
also received relatively little attention. There is, however, some experimental evi-
dence that differences in the transmissivity at horizontal and vertical polarization
are dependent on incidence angle. These differences are observed mainly over veg-
etation elements that exhibit some systematic orientation such as vertical stalks in
tall grasses, grains, and maize (Ulaby et al., 1986; Van de Griend and Owe, 1994a;
Van de Griend et al., 1996). At a nadir (0◦) incidence angle, the stalks are not
visible, and appear only as small randomly oriented disks. However, as the incidence
angle increases, the stalks become more prominent, resulting in an increased effect
on vertically polarized emissions.
In general, the canopy and stem structure for most crops and naturally occurring
vegetation are assumed to be randomly oriented. While it may be reasonable to as-
sume that the optical depth is for the most part polarization independent, especially
at satellite scales, additional validation is provided. The validation analysis is an
important step in the current thesis and will be described in a separate section below.
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Figure 2.7: Locations of SMMR footprints used to calculate the vertical and horizontal
optical depth at saturated conditions.

2.7 Dependence of Polarization on Vegetation

Validation was performed by analyzing areas where the surface soil moisture was
known, namely areas of saturation. Daily and hourly precipitation records through-
out the midwestern Unites States were analyzed for the entire SMMR period (1978-
1987) for exceptionally large storms.
The criteria was that these storms not only had to deposit large amounts of water to
ensure saturation of the surface, but they also had to cover an extensive geographic
area, to ensure near complete coverage of the SMMR footprint (≈ 150 km). Storm
events with greater than 30 mm average precipitation for an entire footprint in a
24-hour period were selected. All gauging stations within the footprint must had
recorded rain during the period. An additional stipulation was that a satellite over-
pass had to occur between 4 and 8 hours after the end of the precipitation event.
The footprint locations used in this analysis are given in Figure 2.7 and cover a
range of canopy types and densities. Assuming complete saturation of the surface,
and knowledge of the soil porosity and texture, the soil emissivity can be assessed
using a dielectric model (Wang and Schmugge, 1980), as described in Appendix A,
and the Fresnel equations (Equation 2.2 and 2.3). The radiative transfer equation
(Equation 2.5) is then inverted and solved for the optical depth, for both vertical and
horizontal polarization.
It is shown that when τH and τV , are plotted together (See figure 2.8), they fall very
close to the 1:1 line, supporting the assumption that the optical depth is independent
of polarization for a random canopy.
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Figure 2.8: Relationship between vertical and horizontal optical depth.

2.8 Atmosphere

Electromagnetic radiation emitted from the ground surface may interact with the
atmosphere in two ways as it propagates to a satellite radiometer. These are inter-
actions between the electromagnetic radiation and 1) atmospheric gases (primarily
oxygen and water vapor) and 2) water droplets existing in clouds and rain.
The primary interaction mechanism is that of absorption of energy by the atmo-
sphere. However, for frequencies below 15 GHz the effects are quite small, and for
frequencies below 10 GHz the effects are negligible. The effect of water droplets
in clouds and rain may be somewhat more significant, and depends largely on two
factors; 1) the phase state of the particles (i.e. ice or liquid) and 2) the size of the
particle relative to the wavelength (Chahine, 1983; Ulaby et al., 1982).
In addition to the atmospheric effects on the emitted surface radiation, there is also
a sky background radiation component, which is reflected back to the observing in-
strument, and also a direct atmospheric component. Each of these components is
further affected (attenuated) by the atmospheric transmissivity.
As stated before, these effects are relatively small at longer wavelengths and in Chap-
ter 4 the influence of the atmosphere in the microwave region will be discussed in
greater detail.
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DESCRIPTION OF DATA SETS

3.1 Satellite Data

3.1.1 Nimbus-SMMR

The microwave data used to retrieve the land surface parameters is from the Scanning
Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7 satellite (Glo-
ersen and Barath, 1977).
The instrument began transmitting data in October of 1978, and was eventually de-
activated in August of 1987. Due to power constraints on board the satellite, the
SMMR instrument could only be activated on alternate days. The polar orbiting
satellite circled the Earth approximately 14 times in one day, with a local noon (as-
cending orbit) and midnight (descending orbit) equator crossing, and a swath width
of about 780 km. The incidence angle was 50.3◦.
Brightness temperatures were measured at five frequencies, from 6.6 GHz to 37 GHz
(See Table 3.1 for more details) at both horizontal and vertical polarization, resulting
in ten different channels.
Although complete coverage of the Earth required about 6 days, sufficient overlap-
ping occurred at the mid-latitudes, to result in repeat coverage over small sites about
2 to 3 times per week. The 24 hour on-off cycle of the instrument permitted both
day and night observations.
The spatial resolution of SMMR was rather coarse, ranging from approximately 25
km at 37 GHz, to 150 km at 6.6 GHz.
The original SMMR data were obtained from the Marshall Space Flight Center Dis-
tributed Active Archive Center (DAAC). Orbit brightness temperatures were ex-
tracted and stored into daily 1

4 degree global maps. If a pixel center fell within a
grid, then the grid is assigned the brightness value. If multiple pixel centers fell
within a 1

4 degree grid, then all the brightness values within the grid were averaged.
Separate day-time and night-time data sets were created.
For this study, only the brightness temperatures for land surface were used. Bright-
ness temperatures of water bodies were masked out. Water bodies have significantly
lower brightness temperatures and are easy to detect and eliminate prior to the anal-
ysis.
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Frequency Wavelength (λ) Spatial Resolution Accuracy
GHz cm km K

6.6 4.5 150 0.7
10.7 2.8 90 0.8
18.0 1.7 55 0.9
21.0 1.4 45 1.0
37.0 0.8 25 1.4

Table 3.1: Characteristics of the SMMR instrument.

The low resolution of Nimbus/SMMR microwave signatures (See Table 3.1) together
with the sampling grid of 1

4 degree (≈ 25 x 25 km2) results in a relatively broad band
along the coast of the water bodies. This band is easily 100 km (east-west direction)
and 75 km (north-south) for 6.6 GHz although it is much narrower at higher fre-
quencies. At 37 GHz, for instance, this band is approximately 25 km (east-west) and
17 km (north-south). This is called the boundary effect and is the primary cause of
mixed pixels. Because of the mathematical complexity due to the inherent irregular-
ity of coastlines in combination with the elliptical shape of the measuring footprint,
these pixels were also eliminated.
In Central Europe the 6.6 GHz signals are extremely high and are probably disturbed
by external radio signals. Therefore the 6.6 GHz data in this area is useless for soil
moisture and vegetation retrieval and is masked out for this study.

3.1.2 TRMM

The Tropical Rainfall Measuring Mission (TRMM) is a joint research program be-
tween the National Aeronautics and Space Administration (NASA) of the United
States and the National Space Development Agency (NASDA) of Japan.
In November 1997, the satellite was launched and placed in a low earth orbit of 350
km. The primary sensor onboard this spacecraft is the TRMM Microwave Imager
(TMI), a passive microwave instrument. The vertical polarized 37 GHz signals mea-
sured with this instrument were used in this study.
The swath width for this instrument is 760 km with an incidence angle of 52.8◦. The
spatial resolution at this channel is 16x9 km.
For this study, two years of data (i.e., 1998, 1999) near the 8 Oklahoma Mesonet
Stations (See section 3.2.3), were selected. In order to select the TRMM data, the
assumption was made that the brightness temperature could be compared with the
soil temperature if the scanning center of the instrument was between ± 0.02 degrees
longitude and latitude boundary of the location of the Oklahoma Mesonet station.
The temporal resolution of the radiometer was 2 times per day on average.
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3.1.3 NOAA-AVHRR

Estimation of land surface vegetation properties from satellite observations is mostly
based on the spectral properties of the vegetation. Spectral measurements in the
visible region (λ = 0.4-0.70 µm) are sensitive to the chlorophyll content of vegeta-
tion, while measurements in the near infrared (λ = 0.73-1.1 µm) are sensitive to the
mesophyl structure of leaves (Townshend et al., 1993).
Vegetation strongly absorbs the visible part and strongly reflects near infrared radi-
ation. Therefore a normalized ratio has a good response to vegetation activity and
the Normalized Difference Vegetation Index (NDVI) has become the most commonly
used index today. It is defined as:

NDV I =
ρnir − ρred
ρnir + ρred

(3.1)

Where ρred is the land surface reflectance in the red band (λ = 0.58-0.68 µm) in the
visible domain and ρnir is the land surface reflectance in the near infrared.
The NDVI data is derived from the Advanced Very High Resolution Radiometer
(AVHRR) on board the NOAA-7, -9, -11, and -14 satellites.
The AVHRR data was adjusted for sensor degradation, volcanic aerosol effects, cloud
contamination, short-term atmospheric effects, solar zenith angle variations, and
missing data (Los et al., 2000).
The data set begins in 1981 and continues through the present. Over North America,
the data consists of 8 km spatial resolution and 15 day temporal resolution, while the
remainder of the globe has a spatial resolution of 1 degree with a monthly temporal
resolution.

3.2 Land Surface Data

3.2.1 Vegetation

3.2.1.1 Leaf Area Index

Global, monthly, 1 by 1 degree Leaf Area Index (LAI) is obtained from the Goddard
Space Flight Center (http://islscp2.gsfc.nasa.gov/) International Satellite Land Sur-
face Climatology Project (ISLSCP) Initiative II. The data set covers a time period
from 1982 to 1990.
The LAI is generally defined as one-sided green leaf area per unit ground area in the
plant canopy (Chen and Black, 1992). It plays an important role in studies of global
climate and biochemical cycles. The LAI is especially important with respect to the
global carbon cycle, with about a quarter of atmospheric carbon dioxide potentially
fixed as gross primary production by terrestrial vegetation annually (Myneni et al.,
1995).
The LAI data set was derived from data collected by the AVHRR on board the
NOAA-7, -9, -11, and -14 satellites. The data was processed on a similar way as the
NDVI data set and the methodology to derive the LAI from NOAA AVHRR data is
described in detail by Los et al. (2000).
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3.2.1.2 Land Cover Classification Map

The global land cover classification map used in this study was developed by Defries
and Townshend (1994). They used monthly NDVI images in a supervised maximum
likelihood technique to obtain 11 land covers. The spatial resolution of this map is 1
by 1 degree and may be found on the ISLSCP CD-ROM (Meeson et al., 1995; Sellers
et al., 1995).
For the United States, the 1

8 degree vegetation classification map from the Land
Data Assimilation System website (LDAS, http://ldas.gsfc.nasa.gov/) is used. This
classification map is based on the 1 km land classification map of the University of
Maryland (Hansen et al., 2000) and the 1 km classification map of the International
Geosphere Biosphere Programme (Eidenshink and Faundeen, 1994).
They developed a first predominant vegetation type map with 13 classes by counting
up the number of occurrences of a particular type of vegetation (1 km scale) within
an 1

8 degree grid box, and then dividing this number by the total number of 1 km
pixels in an 1

8 degree box.

3.2.2 Soil Properties

Soil physical property data such as texture and hydraulic properties were obtained
from the Land Data Assimilation System (LDAS) website at 1

8 degree resolution for
the U.S. (Houser et al., 2000; Mitchell et al., 2000), and from the ISLSCP one degree
global soil property maps for the remainder of the world (Meeson et al., 1995; Sellers
et al., 1995; Zobler, 1986).
The LDAS soil data set was derived from the 1 km Penn State State Soil Geographic
(STATSGO; USDA, 1994) data base and the 5 minute data of the United States De-
partment of Agriculture (USDA) Agriculture Research Service (ARS) and the Food
and Agriculture Organization (FAO). These soil maps were compiled by generalizing
more detailed soil survey maps. Where more detailed soil survey maps were not avail-
able, data on geology, topography, vegetation, and climate were assembled, together
with Land Remote Sensing Satellite (LANDSAT) images.
The LDAS soil type maps where converted to soil characteristic maps (i.e. porosity,
wilting point, sand content, and clay content) with Rawls conversion table (Rawls
et al., 1998). For this study the soil properties of the first 5 cm layer are used.
The ISLSCP global map was derived from the FAO soil map of the world (1974-1981),
scale 1:5,000,000. This global soil type map was converted to soil characteristics by
Zobler (1986).
The 1

8 degree elevation map of the US was also obtained from LDAS. The topographic
data set is based on the GTOPO30 Global 30 Arc Second (≈ 1 km) Elevation Data
Set. This set was distributed by the EROS (Earth Resources Observation System)
Data Center Distributed Active Archive Center (EDC DAAC), located at the U.S.
Geological Survey’s EROS Data Center in Sioux Falls, South Dakota.
In particular, average elevation values over the United States were derived by isolat-
ing the relevant subset of data from the 1 km global data set, and then averaging up
to the 1

8 degree resolution values.
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St. Name Longitude Latitude Alt.(m) Soil Type

Stilwater 97◦ 09’ 50” W 36◦ 12’ 11” N 272 Silty Clay Loam
Marena 97◦ 21’ 28” W 36◦ 06’ 44” N 331 Sandy Clay Loam
Perkins 97◦ 04’ 81” W 35◦ 99’ 83” N 292 Loam
Acme 98◦ 00’ 56” W 34◦ 80’ 56” N 397 Sandy Loam
Goodwell 101◦ 60’ 14” W 36◦ 60’ 17” N 996 Loam
Seiling 99◦ 04’ 06” W 36◦ 19’ 03” N 540 Loam
Nowata 95◦ 60’ 78” W 36◦ 74’ 36” N 206 Silt Loam
Wister 94◦ 68’ 81” W 34◦ 98’ 47” N 143 Silt Loam

Table 3.2: Characteristics of the extracted Oklahoma Mesonet field stations.

3.2.3 Soil Temperature

3.2.3.1 Oklahoma Mesonet

The Oklahoma Mesonet is a network of environmental monitoring stations and con-
sists of 114 automated stations covering the state of Oklahoma. Every station has
a 10-m high meteorological tower on a protected 100 square meter area (10 by 10
meter).
For this study we extracted two years (i.e. 1998, 1999) of soil temperature and soil
moisture information at 5 cm depth at 8 stations with different soil characteristics
at 30 minute temporal resolution.
A summary description of the stations can be found in Table 3.2 and the geographical
location of these sites is shown in Figure 3.1 B. All 8 stations have a grassland cover.
More information of this set can be found at http://okmesonet.ocs.ou.edu/.

3.2.3.2 BARC

Numerous field experiments have been conducted at the USDA Beltsville Agricul-
tural Research Center (BARC) in Maryland located at 39◦ 03’ N and 76◦ 85’ W (See
Figure 3.1 B). One of the first experiments was carried out during October 1979 over
bare and vegetated fields. In this period, soil temperature measurements were made
at several depths, 0-2.5 cm and 10-12.5 cm. Several different types of fields were
included in the measurements (e.g. bare, grass, soybean and corn). This experiment
is described in detail by Wang et al. (1980).
Another experiment was conducted during July-September of 1980. During this pe-
riod soil temperatures were measured at depths of approximately 0.25 cm, 1.25 cm,
2.5 cm, 7.5 cm and 15 cm under several types of cover types. These types were bare,
grass, soybean, and corn. The data set and a detailed description of the set can be
found in Wang et al. (1982).
The third experiment was conducted during June-September 1982. Observations of
soil temperature were made at 1 cm, 3 cm and 7.5 cm depth under a bare soil, grass,
soybean, sorghum, alfalfa, wheat, and corn (O’Neill et al., 1983).
The temporal resolution of these three sets was irregular, but on average, measure-
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ments were made weekly, with several observations made on a given measurement
day.
In order to compare these three experiments with the Oklahoma Mesonet 5-cm tem-
perature set, they were adjusted with linear interpolation to temperature measure-
ments at 0.2 cm, 0.5 cm, 1.25 cm and 5 cm depth.

3.2.3.3 Botswana

Soil temperature data was collected at the Agricultural Research Station at Sebele
(24◦ 34’ S, 25◦ 57’ E, altitude 994 m, see Figure 3.1 C) since September, 1975
under the direction of the Dryland Farming Research Scheme in collaboration with
the Agricultural Research Station and Botswana Meteorological Services (Dryland,
1984).
Until June 1983 the soil temperature was measured daily at three stations at 8:00 hr
and 14:00 hr under a bare soil and a short-grass cover at 1.75 cm, 10 cm and 60 cm
depth.
In order to compare soil temperature values with the other data sets the temperatures
at 0.2 cm, 0.5 cm, 1.25 cm and 5 cm depths were estimated using a linear interpolation
technique.

3.2.4 Soil Moisture

Soil moisture data for the five test sites were obtained from the Global Soil Moisture
Data Bank (http://www.envsci.rutgers.edu/∼robock). Two locations from Eurasia
(Turkmenistan and Mongolia) and three from the U.S. (one in Iowa and two in
Illinois) were used (See Figure 3.1 B and D for the locations).
Observations were made mostly in grassland and agricultural areas. For each of
the test sites, the 6.6, 18 and 37 GHz observations covering the field stations were
extracted from the SMMR data set and the 18 and 37 GHz signals (i.e. these signals
had a resolution of approximately 55 and 25 km, respectively) were converted to the
6.6 GHz footprint (≈150 km) with a nearest neighbor interpolation technique.
Descriptions of the field data sets can be found below, and in Robock et al. (2000).

3.2.4.1 Illinois

The Illinois data set was compiled by the Illinois State Water Survey (Hollinger and
Isard, 1994). The data consisted of 0-10 cm total surface moisture measurements at
19 stations from 1981 to 1996. Six of these stations were used for this study, three
in a northern test site and three in a southern test site. The geographical location
of these stations are for the northern site: 40◦ 92’ N, 90◦ 73’ W; 40◦ 70’ N, 89◦ 52’
W; 40◦ 97’ N, 90◦ 15’ W, and for the southern site: 38◦ 95’ N, 88◦ 95’ W; 38◦ 73’ N,
88◦ 10’ W; 38◦ 13’ N, 88◦ 92’ W.
The soil moisture was measured by neutron probe and calibrated with gravimetric
observations. The measurements were biweekly from March through September and
monthly during the winter. The vegetation cover at all stations was grass.
The northern 150 km footprint test site consists almost entirely of farms, with about
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60 % cropland, 10 % grasses, and about 30 % woodlands. Urban or built-up areas
and surface water account for less than 1 % each. Soils are generally poorly drained
fine to medium textured silt loams to silty clay loams. The topography is nearly flat
to gentle undulating.
The southern site is also largely farm land, with about 40 % crops, 25 % woodlands,
and the remainder in pasture and grasses. Urban area and surface water again
account for less than 1 % each. Soils are for the most part well drained moderately
fine to medium textured silt loams.
The annual precipitation for the northern site is approximately 900 mm per year and
for the southern site 1100 mm per year.

3.2.4.2 Iowa

The Iowa data set is developed by the state University of New Jersey, University of
Maryland and the USDA-ARS-National Soil Tilth Laboratory. The data consisted of
a range of 0-7.5 cm total surface moisture measurements at 6 stations. The stations
were located close to each other (i.e. ≈ 200 m) in two different catchments, located
at 41◦ 20’ N, 95◦ 60’ W in the southwestern part of the state. Each catchment
has three sites where soil moisture observation were taken. The soil moisture was
measured using a gravimetric technique, and recorded in percent wetness by weight.
The record of observations begins in 1972 and continues until 1994. The observations
were made between April and October, on average twice a month.
Within the Iowa footprint 10 % is woodland and forest and 90 % is arable land in a
flat area. The main soil type ( 90 %) is silty clay loam with silt loam soils (10 %)
along the Missouri River. The annual precipitation is about 850 mm per year.

3.2.4.3 Russia

This set consists of gravimetric measurements of soil moisture from 130 meteorolo-
gical stations located in the former Soviet Union, during the period 1978-1985. The
measurements were taken in the upper 10 cm soil layer with a natural grass type
vegetation. The observational plots were about 0.1 ha. in size, and contained four
sampling locations in each plot. The four samples were averaged to yield a mean
value for the plots. Observations were made three times per month during the warm
season, and once a month during the winter. For this study, a station in the dry
Kara Kum desert of Turkmenistan (coordinates 37◦ 30’ N, 62◦ 42’ E) was selected.
Approximately 15 % of the footprint is covered with woodland and forests. The other
85 % is mainly grassland and shrub with cotton farms (< 5 %) along the Murgab
river. The soils are mainly well drained loamy sands. The annual precipitation of
the test site is roughly 200 mm per year.

3.2.4.4 Mongolia

The Mongolian data set consists of 42 stations for the period 1970-93. Twenty-five
sites have pasture vegetation and 17 have wheat. All the observations were made
using the gravimetric technique for the upper 10-cm layer. The station used in the
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validation is located at 44◦ 05’ N, 103◦ 33’ E. Soil moisture was observed three times a
month, on the 7th, 17th and 27th of each month from April until the end of October.
The vegetation within the footprint is sparse and consists mainly of desert grass and
shrub with a silt loam soil. Satellite derived vegetation indices show that there is no
seasonal variation in the vegetation. This site is the driest of all the location studies
with an annual precipitation of less than 200 mm a year. The topography of this test
site is flat.

3.3 Atmospheric Data

3.3.1 Precipitation

Precipitation data for the U.S. originates from the National Climate Data Center
(NCDC), however, a commercial version available on CD ROM (EarthInfo, 1993;
EarthInfo, 1994) was used for this study. The data set can be divided into daily
and hourly observations of precipitation. Both daily (18,770 stations) and hourly
(6,801 stations) precipitation totals are compiled by cooperative stations throughout
all fifty states and U.S. territories. Daily precipitation data for the period 1978 to
1987 was used.
Mean monthly global precipitation of 1983 was developed by the Climate Research
Unit (CRU) of the University of East Anglia. The set has a 0.5 degree spatial
resolution and is based on 19,800 precipitation stations. The station data were in-
terpolated as a function of latitude, longitude and elevation using thinplate splines.
The dataset is described in detail by New et al. (1999) and can be obtained at
the Intergovernmental Panel on Climate Change (IPCC) Data Distribution Centre
(DDC) (http://ipcc-ddc.cru.uea.ac.uk).

3.3.2 Clouds

The International Satellite Cloud Climate Project (ISCCP) began as part of the
World Climate Research Program (WCRP) in 1982. Data have been collected since
1 July, 1983. More than 150 cloud related variables are retrieved from from visible
and infrared satellite data and stored in a 280 km equal area grid in the ISCCP-D1
data set every three hours.
Only the precipitable water for the entire atmosphere was used to investigate the
influence of the atmosphere on the passive microwave signals for this study. More in-
formation on the cloud data set can be obtained from Rossow and Schiffer (1991) and
documentation is available at the following URL:
http://isccp.giss.nasa.gov/documents.html.
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Chapter 4

DERIVATION OF SURFACE
SOIL TEMPERATURES

This chapter is based on:
De Jeu, R.A.M., and M. Owe (2002). Estimating Spatially Averaged Surface Soil Temper-

ature for Microwave Surface Moisture Derivation. Remote Sensing of Environment. Sub-

mitted.

4.1 Introduction

Surface soil temperature describes the energetic state of the soil. It is an impor-
tant prognostic (or state) variable in land surface processes models and an input
parameter in radiative transfer models. In this study surface temperature is espe-
cially important for normalizing microwave radiobrightness temperatures in inverse
radiative transfer modelling methods for soil moisture and vegetation optical depth
retrieval (Owe et al., 2001 and Chapter 5 ). Therefore, there is a distinct need for
accurate estimates of surface soil temperature in environmental modelling.
In order to use these models on a regional or a global scale spatially averaged data
is necessary. The variability of surface temperature in space and time is extremely
high and is a function of incoming solar radiation, air temperature, vegetation, soil
physical properties, and topography.
Traditional techniques have used point measurements of air temperatures and soil
temperatures to derive spatially averaged surface soil temperature, but they intro-
duce large errors because of variability in space.
Thermal infrared (TIR) remote sensing provides spatially averaged values of physical
skin temperature. However, TIR measurements always need atmospheric correction
and the accuracy of the sensors decreases significantly when there is cloud cover.
Microwave remote sensing also has the potential for providing reliable estimates of
spatially averaged surface soil temperature (Calvet et al.,1996; Njoku and Li, 1999;
Van de Griend et al., 1998; Owe and Van de Griend, 2001;Van de Griend, 2001). The
great advantage of microwave instruments compared to TIR sensors is that they are
much less affected by atmospheric conditions and thus require little or no correc-
tion (See Section 2.8). However, the main drawback is the need to estimate surface
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emissivity that depends on soil moisture through the dielectric constant (See Equa-
tion 2.1).
This study presents a technique to estimate the effective temperature by using ver-
tical polarized 37 GHz radiobrightness temperatures.
First the contribution of the atmosphere on this signal is tested. Then a procedure is
presented, which demonstrates the relationship between the 37 GHz signal and soil
temperature at 5 cm depth and the influence of soil moisture on this relationship. A
relationship was developed between soil temperature at 5 cm depth with soil tem-
perature at 1.25 cm depth. With the temperature at 1.25 cm depth it was possible
to generate a temperature algorithm that estimates the temperature of the emitting
layer at 6.6 GHz, which is an important input parameter in the soil moisture and
optical depth retrieval models. The satellite derived soil temperatures at 5 cm depth
were validated with North American snow cover maps.
In addition, the modelled soil temperatures of the 6.6 GHz emitting layer are used in
the passive microwave based soil moisture and vegetation optical depth model which
is described in Chapter 5.

4.2 Atmospheric Effects

The influence of the atmosphere increases with increasing frequency. In this chapter
the 37 GHz vertical polarized brightness temperatures will be used to derive surface
soil temperatures. To understand the magnitude of the atmospheric influence on this
signal, two areas were selected where the vegetation and soil moisture did not change
significantly during the year (e.g., deserts). This means that for these areas, changes
in the apparent emissivity were mainly caused by changes in the atmosphere.
The arid Mongolian test site and a footprint in the Libyan part of the Sahara Desert
(footprint center was 25◦ 12’ 50” N, 13◦ 62’ 50” E) were used. SMMR brightness
temperatures at different frequencies were extracted for these two sites. Because of
differences in footprint size, the higher resolution data was first registered to the 6.6
GHz pixel size by using a nearest neighbor interpolation technique.
Choudhury et al. (1992) indicated that microwave data is sensitive to the precip-
itable water, so for the same test sites the precipitable water was extracted from the
D1 ISCCP data set.
The ratio between horizontal and vertical brightness temperature was used to elimi-
nate the influence of the surface temperature. Figures 4.1 and 4.2 show that water in
the atmosphere significantly influences the brightness temperature ratio at frequen-
cies above 10 GHz.
However it is still not clear if the atmosphere causes anomalies in the horizontal or
vertical signals. To find out which one is affected most, the assumption is made that
the emissivity at long wavelengths (i.e. 6.6 GHz) does not change for these test sites,
because the atmosphere does not affect these signals.
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Figure 4.1: Time series of the brightness temperature ratio (-o-) at different wavelengths
and the precipitable water (-) for the Mongolia test site
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Figure 4.2: Time series of the brightness temperature ratio (-o-) at different wavelengths
and the precipitable water (-) for the Libya test site
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Figure 4.3: Time series of the vertical (top) and horizontal (bottom) emissivity at 37 GHz
(-o-) and the precipitable water (-) for the Mongolia test site

For the vertical polarization, the emissivity is set to 0.98. This value is estimated
with the W-S model (See Appendix A) using the soil characteristics derived from the
ISLSCP data set and a fixed soil moisture value of 0.03 m3 m−3.
The soil temperature also changes the soil emissivity, but for these test sites the

changes are negligible.
The temperature of the emitting layer at 6.6 GHz can now be estimated with Equa-
tion 2.1. The temperature of the emitting layer, Ts, is equal to the soil temperature at
a depth of approximately 28 % of the wavelength (Schmugge, 1983), which is 0.2 cm
for 37 GHz and 1.25 cm for 6.6 GHz. By using linear interpolation with the Botswana
and BARC data sets, the following conversion was made and the temperature of the
emitting layer at 37 GHz was estimated as

Ts[0.2cm] = Ts = 1.039Ts[1.25cm] − 11.380 (4.1)

where Ts[0.2cm] is the temperature of 0.2 cm depth and indicates the temperature
of the emitting layer at 37 GHz. The verification to use this kind of linear models
to obtain soil temperatures from different depths can be found in the next section.
Now the emissivity at 37 GHz can be calculated for both the horizontal and vertical
polarization.
Both Figure 4.3 and 4.4 show that mainly the horizontal polarized brightness temper-
ature is influenced by the atmosphere. The vertical brightness temperature, which is
the one used in the surface temperature algorithm is not significantly influenced by

– 29 –



Chapter 4

09/01/83 09/01/84 09/01/85 09/01/86 09/01/87
0.85

0.9

0.95

1

E
m

is
si

vi
ty

 a
t 3

7 
G

H
z 

[V
]

Libya

09/01/83 09/01/84 09/01/85 09/01/86 09/01/87
0

2.5

5

7.5

P
re

ci
pi

ta
bl

e 
W

at
er

 [c
m

]

09/01/83 09/01/84 09/01/85 09/01/86 09/01/87
0.77

0.82

0.87

0.92

E
m

is
si

vi
ty

 a
t 3

7 
G

H
z 

[H
]

Time
09/01/83 09/01/84 09/01/85 09/01/86 09/01/87

0

2.5

5

7.5

P
re

ci
pi

ta
bl

e 
W

at
er

 [c
m

]

Figure 4.4: Time series of the vertical (top) and horizontal (bottom) emissivity at 37 GHz
(-o-) and the precipitable water (-) for the Libya test site

the atmosphere.

4.3 Surface Soil Temperature Model

As already indicated in the previous sections, it is assumed that the temperature of
the emitting layer, Ts, is equal to the soil temperature at a depth of approximately
28 % of the wavelength. The temperature of these depths are rarely measured in the
field and an algorithm had to be developed to estimate these temperatures in order
to estimate Ts.
Previous papers (Owe et. al., 1999; Owe and Van de Griend, 2001; Owe et al.,
2001) indicated that the vertical polarized 37 GHz can be used to estimate the tem-
perature of the emitting layer at 6.6 GHz. In these papers it has been shown that
the emissivity of the vertical polarized 37 GHz signal approaches it’s maximum value
of about 0.96 at the incidence angles of TRMM and SMMR, which are 52.8◦, and
50.3◦, respectively.
Although the emissivity decreases with soil moisture, it is still above 0.9, even at
saturation. Consequently, the effect of moisture at this frequency and polarization is
small and the emissivity is predominantly a function of the physical surface temper-
ature.
To compare the 37 GHz brightness temperature to soil temperature measurements,
it is necessary to have field observations at the same time and location of the satellite
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Figure 4.5: Relation between the vertical polarized brightness temperature at 37 GHz
and the soil temperature at 5 cm depth for different soil moisture conditions. Note that the
influence of soil moisture on the linear relationship does have a random character.

overpass.
Soil temperatures at 5 cm depth were selected from 8 stations in Oklahoma. These
stations were compared to the vertical polarized 37 GHz brightness temperatures
from the TRMM satellite. TRMM footprints close to the Oklahoma field stations
were selected. This procedure was described in Section 3.1.2. Soil temperature values
at the moment of the overpass were calculated by using a simple linear interpolation
between the 30-minute interval.
When using all of the 8 Oklahoma field stations the general linear relationship be-
tween soil temperature at 5 cm depth and vertical polarized brightness temperature
at 37 GHz can be described as:

Ts[5cm] = 0.754Tb(37GHz[V ]) + 82.043 (4.2)

Where Ts[5cm] is the soil temperature at 5 cm depth and Tb(37GHz[V ]) is the vertical
polarized brightness temperature at 37 GHz, both in degrees Kelvin.
This relationship had a R2 of 0.84, and a Standard Error of Y Estimated (S.E.E.)
of 3.64 K for 1881 measuring points (n). Figure 4.5 gives a graphical presentation of
this relationship.
Differences in soil wetness and soil type did not appear to have a recognizable influ-
ence on this relationship and the observed scatter of the graph is mainly caused by
upscaling problems. The Oklahoma soil temperature measurements are point mea-
surements whereas the brightness temperature measurements are spatially averaged
values.
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Figure 4.6: The relationship between soil temperature at 5 cm depth and 1.25 cm depth
according to field observations in Botswana and the U.S. (BARC) and model simulations
(between the two dotted lines).

A relationship between 1.25 and 5 cm is necessary to get reliable estimates of the
temperature of the emitting layer at 6.6 GHz.
To obtain such a relationship one can use a soil temperature model such as the one
described by McCulloch and Penman (1956). Such a soil temperature model can be
used to model the diurnal and annual variation of soil temperature in depth. This
study was focussed on the annual variation because the satellite overpass was always
at the same hour of day (i.e. noon and midnight). The soil temperature can be
modelled as

T(z,td) = Tave +A0 exp(− z

D
) sin(wdtd − z

D
) (4.3)

Where T(z,td) is the soil temperature in Kelvin at z cm depth as a function of time td
in days, Tave is the average annual temperature at the surface, A0 is the amplitude
of the annual surface temperature fluctuation in Kelvin, and wd the frequency in
days−1 (wd = 2π

365 ).
D is the damping depth, at which the temperature amplitude decreases to the frac-
tion of 1

exp(1) (≈ 0.37) of the amplitude at the soil surface A0. The damping depth
is related to the thermal properties of the soil and the frequency of the temperature
fluctuation. The damping depth for annual variation varies between 50 cm for a peat
soil to 300 cm for a sandy soil (Van Wijk, 1963).
Equation 4.3 can be used for two different depths depths (i.e. z1 and z2) and by
combining these two soil temperature equations for those two depths with the as-
sumption that z 
 D, the soil temperature at z1 can be approached as a function of
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the soil temperature at z2 as

T(z1,td) = T(z2,td) +A0
z2 − z1
D

(
√
2 cos(wdtd − π

4
)) (4.4)

The absolute error of this equation will be in the order of z2

D2 .
Numerous simulations can be made with Equation 4.4 for several soils to estimate
soil temperature at 1.25 cm for given soil temperatures at 5 cm depth. With these
simulations it has been shown that by looking at the annual temperature variation,
the relationship between soil temperature at 1.25 cm and 5 cm will always be between
two boundaries and has a relationship which is almost linear for a large variety of
soils. The boundaries are indicated with dotted lines in Figure 4.6.
With field data from the BARC and Botswana data set, as described in Section 3.2.3.2
and 3.2.3.3, it can be seen in the same Figure that the field observations fell within
these two boundaries. According to the field data the linear relationship between the
soil temperatures at two different depths was

Ts[1.25cm] = 1.142Ts[5cm] − 41.143 (4.5)

For this study this equation was used for the estimation of the temperature of the
emitting layer at 6.6 GHz instead to the soil temperature model (Equation 4.4)
because of lack of information on the damping depth.
Combining Equations 4.2 and 4.5, the relationship between the vertical polarized 37
GHz observations and 1.25 cm soil temperature is calculated and given below

Ts[1.25cm] = Ts = 0.861Tb(37GHz[V ]) + 52.550 (4.6)

This Equation was used globally for this study to calculate the temperature of the
emitting layer at 6.6 GHz.
However, one should keep in mind that this relationship is only based on measure-
ments in Oklahoma, Maryland and Botswana.
The incorporation of additional data sets of coupled soil temperature and brightness
temperature at 37 GHz at different locations in combination with the soil tempera-
ture model (Equation 4.4) will most likely improve this empirical linear relationship
and efforts to locate such data sets are currently in progress.

4.4 Validation of the Model

Validation of the retrieved surface soil temperatures is performed by separate ap-
proaches.
First, the soil temperature retrievals are compared to snow cover maps of North
America. The position of the snow cover boundary will be compared to the satellite
derived freezing temperature (273 K) boundary.
The second approach uses the soil moisture retrieval model described in Chapter
5 to validate the temperature algorithm. The satellite derived temperatures of the
emitting layer at 6.6 GHz are put in the soil moisture and optical depth retrieval
models, and the resulting time series of day-time and night-time soil moisture and
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optical depth values are compared.
The surface temperature is a very sensitive parameter in the soil moisture and op-
tical depth retrieval model and miscalculation of the surface temperature will result
in wrong estimates of soil moisture and vegetation optical depth.
Consequently, if the day-time and night-time soil moisture and optical depth re-
trievals coincide well with each other, one could say that the temperature algorithm
is reliable and will enhance the soil moisture and vegetation data set by using both
day-time and night-time data. In Chapter 5 the results of the latter validation tech-
nique will be described.

4.5 Results

The temperature model was verified by comparing the temperature fields with snow
cover maps. Equation 4.2 was used on monthly averaged day-time and night-time
composites of SMMR vertical polarized 37 GHz brightness temperatures to model
the soil temperature at 5 cm depth.
Monthly maps of North America were made for the months January, April, July and
October for 1983. These composites were compared with snow cover maps from the
same period. The difference in horizontal polarized brightness temperatures between
the SMMR 37 GHz and 18 GHz is used to derive these maps. According to the
difference algorithm of Chang et al. (1987) there is snow cover if

(Tb(18GHz[H]) − Tb(37GHz[H])) > 0 (4.7)

The Figures 4.7 A through H present the combination of the temperature maps with
snow cover maps.
In January, the snow cover boundary is roughly at the US/Canadian border with
exception of the Rocky Mountains and some northern states of the US, like North
Dakota, South Dakota, and Iowa. Temperatures below 273 K can also be found in
similar places and along the Mississippi river in the southern part of the US.
In April the snow cover retreats in northern direction. Most of the snow disappeared
in the Rocky Mountains and along the eastern shore of Quebec (Canada). The
soil temperature starts to increase, especially in Mexico, where the day time soil
temperature easily exceeds 293 K.
In July, there is almost no snow on the North American continent, with exception of
a few spots in Alaska. The soil temperature reaches its maximum in the central part
of the U.S. In Mexico the temperature starts to decrease again.
In October the snow cover appears first in Alaska. The soil temperature decreases
along the entire continent, with exception of some areas along the eastern and western
shore of Mexico.
In general the day-time and the night-time composite temperature values below 273 K
coincide well with the snow cover maps, so it seems that the soil surface temperature
algorithm gives reliable estimates.
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Figure 4.7: Average monthly composites of 1983 of day-time (A, C, E, and G) and night-
time (B, D, F, and H) soil temperature at 5 cm depth of North America. A and B represent
January, C and D April, E and F July and G and H October. The snow cover is also
included and is indicated with black dots.

– 35 –



Chapter 4

4.6 Conclusions and Discussion

Surface temperature is an important parameter in a variety of environmental stud-
ies especially in climate modelling. However, this parameter is seldom measured at
climate stations, and soil temperatures derived from numerical models possess a low
level of accuracy and are frequently prone to large errors. Even if there are field
measurements, they still are point measurements and they don’t provide the spa-
tially distributed mean that are usually required.
Remote sensing seems to be a promising tool for obtaining spatially representative
surface temperatures. The traditional technique for measuring surface temperature
is thermal infrared. However, a huge disadvantage of this technique is that clouds
and other atmospheric phenomena disturb and quite often completely mask the sig-
nal.
Passive microwave remote sensing seems to be a more promising tool, because the
atmosphere affects the microwave signals much less.
According to some previous studies the vertical polarized 37 GHz brightness tempera-
ture possesses potential to estimate this parameter. These observations are preserved
in a 23-plus year historical global database, that begins with Nimbus SMMR in 1978
and extending to the present with SSM/I and TRMM.
These data are ideal for long-term climate studies and other physically based land
processes applications.
A method for using the vertical polarized 37 GHz brightness temperatures to estimate
land surface temperature has been presented. It has been shown that the precipitable
water in atmosphere does not markedly influences the vertical polarized brightness
temperature at 37 GHz and therefore doesn’t need an additional correction.
Brightness temperatures were compared to field soil temperatures at 5 cm depth from
test sites located in Oklahoma, and a linear relationship was developed for those two
parameters. Representative temperatures for the 6.6 GHz emitting layer (≈ 1.25 cm)
were then derived by applying corrections that were based on data from the BARC
and Botswana test sites.
The newly derived surface soil temperature algorithm was used on SMMR 37 GHz
brightness temperature composites of North America and verified with snow cover
maps. Both of these maps showed good comparison, and indicated that the new
temperature algorithm can be used in radiative transfer-based retrieval models for
soil moisture and vegetation optical depth.
However, due to a lack of soil temperature data bases, the surface soil temperature
model is only based on measurements in Oklahoma, Maryland and Botswana. To en-
sure more accurate global application of the retrieval algorithm and especially in light
of prospective new instruments such as SMOS and AMSR satellites one should keep
in mind that measurements of soil temperature in the first one or two centimeters at
different locations can significantly improve the estimation of the temperature of the
emitting layer (Ts). This will subsequently improve the soil moisture and vegetation
retrievals from passive microwave signals.
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RETRIEVAL OF SOIL
MOISTURE AND VEGETATION
OPTICAL DEPTH

This chapter is based on:
De Jeu, R.A.M., and M. Owe (2002). Further Validation of a new Methodology for Surface

Moisture and Vegetation Optical Depth Retrieval. International Journal of Remote Sens-

ing. In Press.

Owe, M., R.A.M. De Jeu, and J.P. Walker (2001). A Methodology for Surface Soil Moisture

and Vegetation Optical Depth Retrieval Using the Microwave Polarization Difference Index.

IEEE Transactions on Geoscience and Remote Sensing, 39:1643-1654.

5.1 Introduction

Research emphasis in soil moisture retrieval from microwave signals has changed from
active to passive as a result of up-scaling problems in the active microwave region.
The techniques developed for active microwave retrievals are well suited for small
scale (≈ 10 ha), but interpretations face problems at larger scales because of the lack
of information about the influence of the topography and vegetation on the return
signal (Walker et al., 2000).
Soil moisture information at larger scales has been identified as a parameter of sig-
nificant potential for improving the accuracy of large-scale land surface atmosphere
interaction models (Shukla and Mintz, 1982; Dirmeyer et al., 2000; Owe et al., 1999).
Soil moisture is an important link between the exchange of water and energy at the
soil-atmosphere interface (Gouweleeuw, 2000). For example, it has been shown that
numerical forecasting of precipitation extremes of the United States are strongly af-
fected by soil moisture fields (Entekhabi et al., 1999).
Numerous studies have successfully demonstrated that passive microwave remote
sensing has great potential for monitoring soil moisture at larger scales (Schmugge
et al., 1986; Jackson and O’Neill, 1990a; Owe et al., 1992; Van de Griend and Owe,
1994a) . The techniques developed in these studies provide spatially averaged hydro-
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logical data, which is ideal for environmental modelling and monitoring.
Such spatially averaged area sets are logistically and economically difficult to obtain
through traditional in situ measurement techniques.
Microwave remote sensing techniques are based on radiative transfer theory that re-
quire the surface description and especially vegetation optical depth to account for
vegetated areas.
Traditional methodologies have attempted to relate remotely sensed estimates of soil
moisture to observed ground data, and then solve for the optical depth as a resid-
ual. These approaches are not ideal because of poor ground-based data sets, and the
inability to quantify spatially representative estimates of surface soil moisture and
vegetation biophysical properties at satellite scales.
The methodology described in this chapter is somewhat unique, in that it solves si-
multaneously for surface moisture and vegetation optical depth, without the use of
observations of surface moisture or biophysical parameters. The technique only uses
the horizontal and vertical polarization brightness temperatures of one frequency and
a surface temperature algorithm based on the vertical polarized 37 GHz signal.
The approach is based on a radiative transfer model, including a newly developed
surface temperature algorithm and a vegetation optical depth retrieval technique.
It is tested with 6.6 GHz Scanning Multichannel Microwave Radiometer (SMMR)
data over footprint-sized test sites in Illinois (USA), Iowa (USA), Turkmenistan, and
Mongolia.
Results are compared with soil moisture field observations, precipitation data, and
satellite-derived vegetation index data.

5.2 Modelling Approach

The methodology presented here solves for the soil moisture and vegetation optical
depth simultaneously, using the simple radiative transfer equation, Equation 2.5, and
the horizontal and vertical brightness temperature at 6.6 GHz.
A nominal satellite footprint size of 150 km is assumed. Even though pixels are
registered to a 1

4 degree grid, all retrieval calculations, including ancillary data, are
based on the assumed footprint size. A uniform footprint, with respect to average
soil and canopy temperatures and vegetation biophysical characteristics is assumed.
Surface moisture and vegetation optical depth are subsequently extracted as average
footprint values.
Since there are still many more variables than can be solved for effectively by the
radiative transfer relationships, some parameters will have to be estimated and/or
solved for independently.
As stated earlier (See Section 2.6), information on the scattering albedo is somewhat
scarce. While most reported values have been estimated primarily as residual calcula-
tions using theoretical approaches with radiative transfer models, limited information
exists on validation efforts from actual field measurements. Based on reported scat-
tering albedo values and the effect of the scattering albedo on the observed brightness
temperature that was illustrated in Figure 2.6, an average value of 0.06 is used.
It was also assumed that surface roughness would have a minimum effect on the
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Figure 5.1: The theoretical relationship between MPDI and the vegetation optical depth
for a range of soil dielectric constants (h = 0, ω = 0.06, and u = 50.3◦). Typical soil
moisture values of 0 m3 m−3, 0.18 m3 m−3, 0.26 m3 m−3, 0.34 m3 m−3, and 0.41 m3 m−3

would correspond to dielectric constants of k = 3, 8, 13, 18, and 23.

surface moisture calculations over the test areas, and was subsequently set to 0.
Furthermore, we didn’t account for spatial distribution of temperature within the
canopy and assume that the soil and vegetation have the same temperature, Ts = Tc
(See equation 2.5), and the mean surface temperature (Ts) of the SMMR footprint
was estimated with Equation 4.6. However, Ts may be provided from other sources
as well.
The model now has two remaining parameters; the optical depth that represents the
vegetation density and directly affects the canopy transmissivity and the soil mois-
ture that affects the the soil emissivity. Solving for these two variables, requires a
more unique approach, and is described below. Brightness temperature measured
from space contains information on both the canopy and soil surface emissions and
their respective physical temperatures (Equation 2.1). Polarization ratios, such as
the Microwave Polarization Difference Index (MPDI), are frequently used to remove
the dependence of the temperature of the emitting layer on Tb, resulting in a pa-
rameter that is quantitatively related to the dielectric properties of all the emitting
surface(s). At the 37 GHz frequency, the MPDI is mainly a function of the overlying
vegetation, and consequently is a good indicator of the canopy density (Becker and
Choudhury, 1988). At a frequency of 6.6 GHz, the MPDI will not only contain infor-
mation on the canopy, namely the optical depth, but will also contain significantly
more information on the soil emission and consequently the soil dielectric properties.
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Figure 5.2: A graphical presentation of the relationship between the absolute value of the
dielectric constant of the soil (k) and the fitting parameters C1, C2, C3 and C4.

j 1 2 3 4

Mj.1 1.3232 · 10−12 5.0225 · 10−11 3.0617 · 10−10 2.5074 · 10−9

Mj.2 −1.7719 · 10−10 −6.5270 · 10−9 −3.9492 · 10−8 −3.2123 · 10−7

Mj.3 1.0020 · 10−8 3.5430 · 10−7 2.1215 · 10−6 1.7088 · 10−5

Mj.4 −3.1332 · 10−7 −1.0452 · 10−5 −6.1648 · 10−5 −4.8891 · 10−4

Mj.5 5.9980 · 10−6 1.8329 · 10−4 1.0560 · 10−3 8.1506 · 10−3

Mj.6 −7.4764 · 10−5 −1.9876 · 10−3 −1.1011 · 10−2 −8.0281 · 10−2

Mj.7 6.6256 · 10−4 1.4150 · 10−2 7.3781 · 10−2 4.5635 · 10−1

Mj.8 −2.0330 · 10−3 −2.7467 · 10−2 −4.4594 · 10−1 −1.5691

Table 5.1: Polynomial parameters that describe the relation between the absolute value
of the dielectric constant of the soil (k) and the fitting parameters C1,C2, C3 and C4 (See
Equation 5.3).

The MPDI is defined as

MPDI =
Tb(V ) − Tb(H)

Tb(V ) + Tb(H)
(5.1)

The theoretical relationship between the MPDI and the vegetation optical depth as
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Figure 5.3: Verification comparing the MPDI-optical depth relationship derived from the
radiative transfer equation to calculation from simulated data (h = 0, ω = 0.06, and u =
50.3◦).

derived from the radiative transfer equation (Equation 2.5), is illustrated in Fig-
ure 5.1.
This relationship was derived by running numerous simulations of Tb(V ) and Tb(H)

for different dielectric constants and optical depth. As one notices, however, the
relationship between the optical depth and MPDI exhibits a strong dependence on
the surface moisture, and is defined by a family of curves according to the surface
moisture content. Instead of using soil moisture, however, the absolute value of the
soil dielectric constant is used in order to eliminate the influence of soil physical
properties. These curves may be defined by fitting a polynomial to the simulations,
according to

τ = C1 ln(MPDI)3 + C2 ln(MPDI)2 + C3 ln(MPDI) + C4 (5.2)

where the parameters C1, C2,C3 and C4 are a function of k, and can be defined by
the relationship

Cj =Mj.1k
N +Mj.2k

(N−1) + . . .Mj.Nk +Mj.(N+1) (5.3)

Where N is the degree of the polynomial, M refers to the polynomial coefficients
(See Table 5.1 and Figure 5.2) and the subscript j refers to the term number. Verifi-
cation of the above relationships is illustrated in Figure 5.3. The theoretical optical
depth, as derived by solving the radiative transfer equation, is plotted together with
the model simulation results for wet and dry soil moisture conditions. Agreements
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Figure 5.4: A simplified diagram of the soil moisture retrieval methodology

between the two solutions is good.
By substituting Equation 5.2 into Equation 2.6 and 2.5, the optical depth is elimi-
nated and the vegetation parameter in the radiative transfer model is now expressed
as a function of MPDI and the soil dielectric constant. The remaining term in the
radiative transfer equation (Equation 2.5) is the soil emissivity, er(l). As H polariza-
tion has the greatest sensitivity to soil moisture we solve for er(l) using Tb(H). The
emissivity of the soil is calculated from the Fresnel equations (Equation 2.2 and 2.3),
where the only unknown is the dielectric constant of the soil. We now have both
the vegetation optical depth and the soil emissivity defined in terms of soil dielectric
constant. Next, the model uses a non-linear iterative procedure to solve the radia-
tive transfer equation (Equation 2.5) in a forward approach, by optimizing on the
dielectric constant.
Once convergence of the calculated and observed brightness temperatures is achieved,
the model uses information on soil physical properties, such as particle size dis-
tribution, porosity, and wilting point (See section 3.2.2), together with the Wang-
Schmugge dielectric model (Wang and Schmugge, 1980) to solve for the surface soil
moisture.
In Figure 5.4 the soil moisture retrieval technique is presented in a simplified diagram.

5.3 Results

The methodology outlined above for retrieving of both surface soil moisture and veg-
etation optical depth has been applied to the entire historical data set of SMMR
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brightness temperatures for the previously described locations; Turkmenistan, Mon-
golia, Iowa and Illinois. These areas were selected because of the availability of long
term soil moisture data that can be used for validation purposes.
While not necessarily the most optimum data set for microwave validation, these
sets are one of the few data sets in the world, that cover such a large area for such a
lengthy period.
Topographic and land use maps were used to select pixel-sized test sites that were
relatively flat and homogeneous with respect to land cover. Time series of satellite
derived soil moisture are compared to observational soil moisture values from sam-
pling stations within the footprints.
Before looking at these graphs, one must keep in mind several important differences
when comparing the satellite-derived surface moisture with the ground observations.

• Differences in spatial resolution
The SMMR-derived surface moisture is an average value integrated over the
entire footprint, whereas the observational data are point measurements.

• Differences in vertical resolution
the observational data are an average soil moisture within the top 10 cm profile,
while the SMMR retrievals reflect only the moisture content of the microwave
thermal sampling depth, which is at most only about 1 to 2 cm.

• Differences in acquisition times
Ground and satellite observations rarely occur on the same day.

• Inter-observation periods
While the SMMR observations are displayed with connecting lines, it is done
so only to help in observing general trends in the time series. It is important to
realize that significant changes in surface moisture may have occurred during
the periods between observations, however, these changes may have gone totally
undetected by both the satellite and the ground observations.

In Illinois two 150 km test sites were selected for validation (See Figure 3.1 B), with
each site containing 3 observation stations. The soil moisture field data is reported
as average volumetric moisture content in the top 10 cm profile.
The Iowa location (See Figure 3.1 B) contained two research catchments with three
soil moisture measuring stations in each. Measurements for this location represented
the average moisture for the top 7.5 cm soil layer. The six bi-monthly point mea-
surements were averaged, providing perhaps the most spatially representative soil
moisture values of all the test sites.
A one year time series of SMMR-derived surface moisture along with the observed soil
moisture from these three U.S. test sites are given in Figure 5.5. Daily precipitation
is also included in the time series to assist in understanding the observed changes in
soil moisture.
The Mongolia and Turkmenistan locations could be characterized by only one soil
moisture measuring stations each. Both the Mongolian and the Turkmenistan sites
(See Figure 3.1 D) are characterized as semi-arid areas.
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The Mongolian site is located in the southern part of the Gobi desert and the Turk-
menistan site in the southern part of the Kara Kum Desert. Compared to the U.S.
test sites, the satellite data is able to clearly differentiate between the dry and wet
locations.
All time series of satellite-derived soil moisture illustrate discernable seasonal pat-
terns, although correspondence with the ground observations is not always perfect
(See Figure 5.5).
Not every SMMR brightness temperature measurement gave soil moisture and veg-
etation optical depth estimates because sometimes the non linear model did not
converge. In addition, if the surface temperature algorithm generated values below
the freezing point the measuring points were eliminated.
Time series of the retrieved optical depths for the same test sites were given in Fig-
ure 5.6. Fifteen day NDVI composite data are averaged for the U.S. SMMR footprints
(monthly for the Eurasian), and are included for comparison.
A distinct annual course is observed in the optical depth time series, and coincides
well with the NDVI at all sites.
The optical depth, however, is seen to be much more variable in time than the NDVI.
This is due to the inherent characteristics of the NDVI compositing procedure, where
only one value is selected during the composite window to represent the entire com-
posite period. The inability to quantify the vegetation biomass at shorter (i.e. daily)
time scales is often a drawback of the NDVI. This may be rather significant in arid
and semi-arid regions, where greening and senescing of the vegetation canopy (espe-
cially grasses) can occur over very short time periods in response to localized and
individual precipitation events. The microwave optical depth may actually be a bet-
ter indicator of green biomass and vegetation dynamics at shorter time scales.
However, it is also important to understand that the NDVI and the microwave opti-
cal depth respond to entirely different vegetation properties.
The NDVI is defined as the normalized difference between the reflectance in the vis-
ible (red) that represents the absorption band of chlorophyll and the near infrared
band that represents a maximum of vegetation reflectance related to the mesophyll
structure. The NDVI strongly depends on optical properties of vegetation and is
mainly sensitive to leaf water and chlorophyll content (P. Guillevic, Pers. Comm.).
The microwave optical depth, on the other hand, responds primarily to the vegeta-
tion water content, as a function of the vegetation dielectric properties.
The day-time and night-time soil moisture and vegetation optical depth illustrate
values that fall along the same trend in both the moist and dry areas, indicating that
the temperature of the emitting layer is reliable and consistent in its estimation.
Even more important, the temperature algorithm can be applied to both the day-
time and night-time data, resulting in a significant enhancement of the soil moisture
and vegetation optical depth data set.

5.4 Summary and Conclusions

A methodology is presented, that retrieves pixel average surface soil moisture and
vegetation optical depth from dual polarized microwave brightness temperature ob-
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servations, and has been applied to the 6.6 GHz SMMR data.
The radiative transfer-based approach does not use ground observations of soil mois-
ture, canopy measurement data, or other regional/geophysical data as calibration
parameters, and is totally independent of frequency.
However, some assumptions regarding the different elements of the radiative transfer
equation are made, in order to reduce the number of variables.
It was assumed that the soil temperature (Ts) was equal to the canopy temperature
(Tc). A separate algorithm to estimate Tc would improve the model, especially for
the day-time data under sparse canopies where you have the highest difference be-
tween Tc and Ts. However, such an algorithm is currently not available and remains
a topic for future research.
The model assumes a constant value for the single scattering albedo, based on a
series of previous studies, and derives surface temperature from high frequency (37
GHz) vertically polarized brightness temperature data.
A soil roughness parameter was not included during this analysis, however, improve-
ments resulting from the inclusion of a roughness parameter based on land use or
topographic data, especially in mountainous or other extreme terrain will also be
investigated in the near future.
Days with snow cover or when surface temperatures were below zero were eliminated
from the analysis.
A non-linear iterative approach is used to solve for the surface moisture and vegeta-
tion optical depth, both of which are derived from the soil dielectric constant.
The model was applied to several sites with observations of surface moisture, located
in the U.S., Mongolia and Turkmenistan.
Time series of the satellite-derived surface moisture compared well with the available
ground observations and precipitation data.
The vegetation optical depth showed similar seasonal patterns as the NDVI.
In addition, the day-time and night-time vegetation optical depth and soil moisture
are in agreement, which is an extra indication of the reliability of the surface soil
temperature model, as described in Chapter 4.
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Figure 5.5: Time series of satellite derived day-time (◦) and night-time (+) soil moisture
and ground observations (∗) for the test sites. For comparison the precipitation is included
for the American sites.
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Figure 5.6: Time series of satellite derived day-time (◦) and night-time (+) vegetation
optical depth and NDVI (−) for the test sites. For comparison the precipitation is included
for the American sites.
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Chapter 6

LIMITATIONS OF THE LAND
SURFACE PARAMETER
RETRIEVALS

This chapter is based on:
De Jeu, R.A.M., and M. Owe (2002). Limitations of land surface parameters derived from

passive microwave remote sensing. International Journal of Remote Sensing. Submitted.

6.1 Introduction

Ideally, results of the land surface parameter models are validated by comparison
with time series of measured land surface parameters (Gouweleeuw, 2000).
In this study the passive microwave soil moisture retrieval model was validated with
time series of measured soil moisture. The vegetation optical depth was verified with
NDVI data (Section 5.3) and the surface soil temperature with snow cover data and
validated with the soil moisture retrieval model itself (Section 4.4).
However, as already mentioned in Section 5.3, the comparison of the retrieved para-
meters with field data or data with a different spatial and/or temporal resolution is
often difficult and may introduce wrong interpretations.
To obtain a better understanding of the potential and limitations of the land sur-
face retrieval models, an error propagation analysis was performed. This analysis is
conducted to evaluate the potential error in the retrieved land surface parameters by
looking at the accuracy of the input parameters.
The accuracy of the input parameters is sometimes difficult to estimate with any
degree of precision because of the limitations of available measurement techniques
and the associated spatial and temporal variability. Some input parameters, like the
measured brightness temperatures have a well-defined value for their accuracy, while
others need a ”best guess” approach.
Although it is not possible to compare the satellite derived soil moisture and veg-
etation optical depth with ”true” values, due to the lack of existing data sets for
comparison and extreme difficulty in measuring spatially averaged soil moisture and
vegetation optical depth, the error propagation analysis is still an appropriate tech-
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nique, because it illustrates the sensitivity of the input parameters.
This chapter begins with the theory of the error propagation analysis, followed by
its application to the five test sites.
The second part of this chapter deals with the masking routine. At some points the
land surface models cannot be used because the physical limitations of microwave
technology are exceeded. In this chapter applications are described that can de-
tect these miscalculations. These model limitations are discussed in detail and this
chapter concludes with a general discussion about the restrictions of the models.

6.2 Error Propagation Analysis

6.2.1 Theory

The description of an error propagation analysis can be found in most general sta-
tistical textbooks and an adapted version for the retrieved land surface parameters
is given below. The accuracy of the land surface parameters may be calculated by
using the errors of the input parameters. This can be done with a covariance matrix:

Σy = UΣxU
′

(6.1)

where

y =



Ts
τ
θ


 , Σy =




σ2
Ts

σTsτ σTsθ

σTsτ σ2
τ στθ

σTsθ στθ σ2
θ


 , x =




Tb 6.6 [H]

Tb 6.6 [V ]

Tb 37 [V ]

P
WP



,

Σx =




σ2
Tb 6.6 [H]

0 0 0 0
0 σ2

Tb 6.6 [V ]
0 0 0

0 0 σ2
Tb 37 [V ]

0 0
0 0 0 σ2

P 0
0 0 0 0 σ2

WP



,

U is the partial derivative matrix and may be defined as

U =




∂Ts

∂Tb 6.6 [H]

∂Ts

∂Tb 6.6 [V ]

∂Ts

∂Tb 37 [V ]

∂Ts

∂P
∂Ts

∂WP
∂τ

∂Tb 6.6 [H]

∂τ
∂Tb 6.6 [V ]

∂τ
∂Tb 37 [V ]

∂τ
∂P

∂τ
∂WP

∂θ
∂Tb 6.6 [H]

∂θ
∂Tb 6.6 [V ]

∂θ
∂Tb 37 [V ]

∂θ
∂P

∂θ
∂WP




The assumption is made that there is no correlation between the input parameters.
Taking into account that the temperature of the emitting layer (Ts) at 6.6 GHz is
estimated with only the 37 GHz vertical polarized brightness temperature, Σy may
be defined as:
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Σy =




( ∂Ts

∂Tb 37 [V ]
σTb 37 [V ])

2 ∂Ts∂τ
∂T 2

b 37 [V ]
σ2
Tb 37 [V ]

∂Ts∂θ
∂T 2

b 37 [V ]
σ2
Tb 37 [V ]

( ∂τ
∂Tb 6.6 [H]

σTb 6.6 [H])
2+ ∂τ∂θ

∂T 2
b 6.6 [H]

σ2
Tb 6.6 [H]

+

( ∂τ
∂Tb 6.6 [V ]
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2+ ∂τ∂θ
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b 6.6 [V ]

σ2
Tb 6.6 [V ]

+
∂Ts∂τ

∂T 2
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σTb 37 [V ])
2+ ∂τ∂θ
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

6.2.2 Application to the Test Sites

6.2.2.1 General

The accuracy of the input parameters is partly estimated with a ”best guess” ap-
proach and partly taken from literature. The standard deviations of the brightness
temperatures are taken from the Nimbus/SMMR manual (Gloersen and Barath,
1977) and are 0.7 K and 1.4 K for the 6.6 GHz and the 37 GHz channels, respec-
tively. The standard error of the porosity (P ) and wilting point (WP ) from the LDAS
and FAO data set are unknown and it is very difficult to give reliable estimates of
the accuracy of these soil properties. This is due to the complex spatial distribution
of the soil properties of the top soil layer. In order to get an idea of the magnitudes
of the accuracy, the global range in porosity and wilting point is used to estimate
the standard deviation. The accuracy of the porosity is set at 0.02 m3 m−3 and the
wilting point at 0.03 m3 m−3.
The error propagation analysis is used to calculate the standard deviations of the
land surface parameters for all five test sites for the entire period of record of the
SMMR data.
Matrix U from Equation 6.1, is derived by numerical calculation at every time step.
At each step there were three simulations for each individual input parameter.
The first simulation estimated the land surface parameters with the given input pa-
rameters. The second simulation estimated the land surface parameters by using a
positively changed value of the input parameter by only one percent of its original
value. The third simulation estimated the land surface parameters with a lower value
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Figure 6.1: The standard deviation of the soil moisture as related the vegetation optical
depth. Note the different relations for different moisture regimes

of the input parameter by subtracting one percent of the value from the original input
parameter. The latter two simulations were averaged to estimate the change of the
land surface parameters compared to change of the individual input parameters.
Matrix U (See Equation 6.1) can be derived by doing these three simulations for
every input parameter individually. The standard deviation of the land surface pa-
rameters can now be derived.

6.2.2.2 Standard deviations of the land surface parameters

The standard deviation of the temperature of the emitting layer at 6.6 GHz for the
five test sites is rather constant and reaches a value of 1.2 K.
The standard deviations of the soil moisture and the vegetation optical depth are
not constant and require further explanation.
For all the 5 test sites together, the standard deviations of the soil moisture varied
between 0.02 m3 m−3 and 0.12 m3 m−3 with an average value of 0.05 ± 0.02 m3 m−3.
The standard deviation of the soil moisture is related to the vegetation optical depth
according to the relationship illustrated in Figure 6.1. This graph clearly shows the
expected increase in uncertainty of soil moisture when the vegetation cover increases
in density. As already explained in Section 2.6, the relative proportion of soil mois-
ture information within the passive microwave signal decreases when the biomass
increases, resulting in a less accurate soil moisture estimate. The same Figure also
shows high standard deviation values for low soil moisture values. For example, for
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Figure 6.2: The Coefficient of Variation (CV) of the soil moisture as related to the vegeta-
tion optical depth. The relationship is separated in two different soil moisture classes, where
(A) represents the dry soils with soil moisture values below 0.2 m3 m−3 and (B) represents
the wet soils with soil moisture values between 0.2 and 0.5 m3 m−3. In Figure A the thick
dots represent dry soils with soil moisture values below 0.1 m3 m−3 and the thin dots soil
moisture values between 0.1 and 0.2 m3 m−3.

the soil moisture range between 0.0 and 0.1 m3 m−3 the standard deviation values
are between 0.05 and 0.07 m3 m−3. These values are due to the low sensitivity of
the dielectric constant of the soil in response to soil moisture in the range between 0
and 0.1 m3 m−3 (See Figure 2.2). In this range a small change in the soil dielectric
will give a big change in soil moisture.
The standard deviation of soil moisture as a function of the vegetation optical depth
can also be interpreted in terms of mean soil moisture. Often, higher standard devia-
tions are observed primarily when the mean is also high. In such cases, however, the
relative standard deviation actually remains fairly constant. The coefficient of vari-
ation (CV = std

mean ) is frequently used to investigate such relationships (Figure 6.2).
The CV of soil moisture is seen to be highly variable throughout the entire range of
vegetation optical depths. While this relationship appears somewhat random at first
glance, a distinct pattern is observed when the data are grouped by range of mean
soil moisture. For very dry soils (θ < 0.1 m3 m−3), the variability of soil moisture
is extremely high (Figure 6.2 A). At the intermediate soil moisture range (θ = 0.1 -
0.2 m3), the variability, while still high, is significantly reduced (Figure 6.2 A). For
wetter soils (θ > 0.2 m3 m−3), a more typical pattern for the CV emerges, and the
variability in soil moisture becomes even lower (Figure 6.2 B).
This phenomenon can actually be explained theoretically. The dynamic range of the
observed emissivity relative to the optical depth, is very low for dry soils. This range
in emissivity increases significantly as the soil moisture increases (See Figure 2.5).
Soil moisture and vegetation have opposite effects on the emissivity. This paradox
may be explained in more simplified terms.
The observed brightness temperature and resulting emissivity for a dry soil is high.
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Figure 6.3: The standard deviation of the vegetation optical depth as related to the soil
moisture. Note the different relations for different vegetation types.

In this situation, a vegetation canopy will actually work in tandem, and increase the
brightness temperature and emissivity even more. As the soil moisture increases,
it appears too cool, and the range in emissivity relative to the optical depth also
increases.
The standard deviation of the optical depth, relative to soil moisture, is inversely
related, but exhibits a more distinct pattern overall (Figure 6.3). When the data
are grouped by levels of mean optical depth, it is clearly seen that the magnitude
of the standard deviation, in a absolute sense, at a given soil moisture, is in direct
proportion to the mean. However, when we look at the coefficient of variation of
the optical depth, we find that the highest CVs correspond to lower mean optical
depth values, but only under relatively dry moisture conditions (θ ≤ 0.15 m3 m−3)
(Figure 6.4 A). In other words, the standard deviation of the optical depth, relative
to the mean, actually decreases as the optical depth increases during dry conditions
(Figure 6.4 A). As the soil moisture increases, the CV of the optical depth decreases
more or less uniformly, regardless of vegetation cover (Figure 6.4 A and B).
Again, this explanation has a strong theoretical basis (See Figure 2.5). At low mois-
ture conditions, the soil emission is high and the additional contribution to the overall
observed emissivity from low levels of vegetation is also low. Consequently, it is more
difficult to partition the relatively small contribution from the vegetation. As soil
moisture increases, the soil cools and the emission becomes lower, the relative contri-
bution of the vegetation to the overall observed emissivity becomes more significant.
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Figure 6.4: The coefficient of variation of the vegetation optical depth as related to the
soil moisture. The relationship is separated in two different vegetation classes, where (A)
represents sparse vegetation with optical depth values below 0.4, and (B) represents dense
vegetation with optical depth values between 0.4 and 0.8.

6.2.2.3 Sensitivity of the individual input parameters

To understand the sensitivity of the individual input parameters on the model output,
the contribution of these parameters in the total standard deviation was calculated.
For every test site the standard deviation of soil moisture and vegetation optical
depth was estimated using the error propagation analysis, and within this analysis,
the contribution of every single input parameter was estimated. The resulting values
are summarized in Table 6.1. In this Table both the night-time and day-time sets
were combined, because the error propagation analysis did not show significant dif-
ferences between those two sets. The current table shows that the accuracy of the
soil moisture for the wet American test sites is mainly dominated by the accuracy
of the horizontal polarized brightness temperature at 6.6 GHz (Tb6.6[H]). For the
dry Eurasian sites the vertical polarized brightness temperature at 37 GHz (Tb37[V ])
becomes more important. The standard deviation of the vegetation optical depth
is mainly determined by the accuracy of both the horizontal and vertical polarized
brightness temperatures at 6.6 GHz for the wet American test sites. For the dry
Eurasian sites the vertical brightness temperature at 6.6 GHz becomes less impor-
tant and the accuracy of both the horizontal 6.6 GHz and the vertical 37 GHz give
a main contribution to the total standard deviation of the vegetation optical depth.
In general, this means that if engineers can increase the accuracy of the microwave
sensors, the accuracy of the soil moisture and vegetation optical depth retrievals
increases significantly. Also, in the dry areas, the accuracy of both parameters is
mainly related to the vertical 37 GHz signal and therefore related to the temperature
of the emitting layer (Ts). This means that a better surface temperature algorithm
will certainly improve the accuracy of these two land surface parameters in dry areas.
The influence of soil physical properties on the retrieval of soil moisture and vege-
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tation optical depth is limited. In the entire error propagation analysis the surface
roughness (h) and the single scattering albedo (ω) were not used as input parameters,
because for the retrieval algorithm these parameters were fixed (i.e. h = 0, and ω
= 0.06). In order to check the influence of these parameters on the model, both the
roughness and albedo were put in the error propagation analysis and the percentages
on the total standard deviations were estimated. For a single scattering albedo stan-
dard deviation of 0.003, the influence of the albedo on the total standard deviation
of soil moisture was 7 % for the American sites and about 2 % for the Eurasian sites.
The influence of the single scattering albedo on the total standard deviation of the
vegetation optical depth was limited and approximately 1.5 % for all the test sites.
With an assumed standard deviation of 0.02, the roughness influence on the total
standard deviations of soil moisture and vegetation optical depth was negligible.

6.3 Masking Routine

6.3.1 General

A data mask was developed in order to provide an improved and more realistic map
of reliable data points. It eliminates those data grid cells where data values are either
meaningless, such as areas with frozen surfaces or snow cover, areas with excessive
vegetation, or where errors were known to be so excessive, that their reliability is
in serious doubt. The masking process consists of several distinct routines which
are specific to the various surfaces and their respective errors. These routines are
executed as part of the model either before, during, or after the retrieval algorithm.

6.3.2 Snow and Frozen Soil

The dielectric constants of water, ice and snow are so drastically different that these
three materials are easy to distinguish with the passive microwave signals. Land sur-
face retrieval models are based on the dielectric constant of water and not on snow
or ice, so when the soil temperature is below freezing or when there is snow on the
ground these models cease to provide useful information. However, during snow free
freezing conditions it seems possible to obtain reliable surface soil temperatures from
the 37 GHz vertical polarized brightness temperatures. Efforts to test this hypothesis
are currently in progress. Pixels with snow were detected with the difference algo-
rithm of Chang et al. (1987) and frozen soils were detected with the newly developed
surface soil temperature algorithm, as described in Chapter 4. These pixels were
excluded for further calculation.

6.3.3 Vegetation

Soil emission is attenuated by the canopy and tends to saturate the microwave signal
with increasing optical depth, resulting in a decreased sensor sensitivity to soil mois-
ture variations (See Section 2.6). Figure 6.1 shows this effect explicitly, with high
soil moisture deviations for high optical depths.
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Test Site Par. Mean STD CV Tb 6.6 [H] Tb 6.6 [V ] Tb 37 [V ] P WP

σ=0.7 σ=0.7 σ=1.4 σ=0.02 σ=0.03

N. Illinois θ 0.24 0.06 0.23 59.2 15.8 25.0 0 0

τ 0.52 0.04 0.08 57.5 35.6 5.8 0 1.1

S. Illinois θ 0.26 0.06 0.22 58.1 16.2 25.7 0 0

τ 0.53 0.04 0.07 56.9 36.9 5.2 0 1.0

Iowa θ 0.27 0.06 0.22 59.1 15.8 25.1 0 0

τ 0.54 0.04 0.08 57.3 36.5 5.4 0 0.8

Turkmenistan θ 0.15 0.05 0.31 31.5 7.8 60.7 0 0

τ 0.33 0.05 0.15 39.1 15.3 41.8 0.2 3.6

Mongolia θ 0.13 0.05 0.37 31.2 6.8 62.0 0 0

τ 0.25 0.06 0.23 34.8 11.2 49.9 0.3 3.8

Table 6.1: Contribution of the input parameters in the total standard deviations of the soil moisture and vegetation optical depth.
Note, the soil moisture values (θ) are in m3 m−3.
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According to Njoku and Li (1999) the limit to detect soil moisture changes at 6.6
GHz, is achieved when the vegetation cover has a water content (VWC) of 1.5 kg
m−2, which corresponds to a vegetation optical depth of about 0.75. In the previous
section we saw that in our study areas the soil moisture uncertainty is very high (CV
> 0.8) when the vegetation optical depth reaches a values of 0.8. So one can say that
for areas with a vegetation optical depth beyond 0.8 the vegetation and soil moisture
retrieval model isn’t reliable anymore and the soil moisture and vegetation optical
depth values under these conditions are masked out.
The accuracy of the soil surface temperature retrieval algorithm under different veg-
etation types is still unknown and work on this part needs to be done in the near
future.

6.4 Conclusions

The error propagation analysis reinforced the hypothesis that the standard deviations
of retrieved soil moisture are high when the vegetation optical depth is high. The soil
emission is attenuated by the vegetation and as the vegetation cover becomes denser
the sensitivity of the microwave sensor to retrieve soil information will subsequently
decrease.
Low soil moisture values also have high standard deviations. These high deviations
were due to the low sensitivity of the dielectric constant of the soil on soil moisture
when it is dry.
Optimum results in the detection of accurate soil moisture with the satellite retrieval
model can be obtained with high soil moisture values under sparse vegetation.
Compared with wet conditions, the uncertainty of the vegetation optical depth is high
at dry conditions. This phenomenon also has a theoretical basis. At low moisture
conditions, the soil emission is high and the additional contribution to the overall
observed emissivity from low levels of vegetation is also low. As soil moisture in-
creases, the soil cools and the emission becomes lower, the relative contribution of
the vegetation of the overall observed emissivity becomes more significant.
Improvement in the accuracy of the passive microwave instruments will significantly
contribute to the accuracy of the satellite derived land surface parameters. In addi-
tion, a more accurate surface temperature model will enhance the accuracy of both
soil moisture and vegetation optical depth, especially in dry areas.
To increase the reliability of the retrieved land surface parameters a masking routine
has been applied. At first, the microwave algorithm is unable to retrieve reliable
land surface parameters when the soil is frozen or when there is snow on the ground.
This is due to the distinct behavior of snow and ice on the dielectric constant. Pix-
els containing snow and/or ice cover were subsequently excluded prior to initiation
of the retrieval algorithm. Second, the microwave sensor loses sensitivity to detect
soil moisture variation when the vegetation cover is dense. The retrieved soil mois-
ture and vegetation optical depth values were excluded for further calculation when
the vegetation optical depth reaches a value of 0.8, which is an average value for a
vegetation cover with a vegetation water content (VWC) of approximately 1.5 kg
m−2.
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LAND SURFACE PARAMETERS
DERIVED FROM 18 GHz

7.1 Introduction

Soil moisture is an important hydrologic variable in a variety of land surface atmo-
sphere interactions (Lakshmi et al., 1997). It integrates precipitation and evaporation
over periods of days to weeks and introduces a significant element of memory in the
atmosphere/land system (Jackson et al., 1999).
In addition it has been shown that soil moisture is a very important factor in the
study of climate using global circulation models (Walker and Rowntree, 1977; Rown-
tree and Bolton, 1983; Rind, 1982; Mintz, 1984). Therefore, there is a distinct need
for a long term spatially averaged global soil moisture data base.
With the development of the methodology presented here, it is possible to generate
such data bases for soil moisture, vegetation optical depth and surface soil tempera-
ture. This can be done with the 6.6 GHz and 37 GHz signals from the Nimbus/SMMR
satellite which cover the 9 year period between October 1978 through August 1987.
To extend this period until the present, other satellites observations are necessary.
However, the frequency used for the soil moisture retrieval technique was 6.6 GHz,
and such a satellite sensor hasn’t been available since the deactivation of SMMR.
Since 1987 the only stable microwave sensor with regular global coverage was the
Special Sensor Microwave Imager (SSM/I), an instrument onboard several DMSP
satellite platforms. However, the limiting feature of the SSM/I instrument for soil
moisture-related studies, is that the frequencies are higher and are significantly af-
fected by vegetation (Jackson, 1997).
In the past, several attempts have been made to utilize these sensors in soil moisture
studies with limited success (Choudhury and Golus, 1988; Jackson, 1997; Kerr and
Njoku, 1990; Owe et al., 1992).
This chapter will investigate the possibility of using SSM/I observations to generate
a long term global land surface parameter data base.
Since the lowest frequency of the SSM/I is 19.4 GHz, the ideal situation would be
to generate SSM/I soil moisture retrievals and compare them to 6.6 GHz SMMR re-

– 59 –



Chapter 7

trievals for the same time period. This, however, is not possible because the overlap
between these two instruments was less than one month, and would not provide a
reliable comparison.
Consequently, an alternative method for testing the utility of SSM/I for soil moisture
retrieval was developed, whereby SMMR 18 GHz observations were used for compar-
ison with the 6.6 GHz data. The frequency of this signal is similar to the SSM/I
signal and has an optimum temporal overlap with the 6.6 GHz.
The first section of this chapter will discuss the model modification for the use of
the 18 GHz, and in the following section the results are compared with the 6.6 GHz
retrievals. Furthermore, an error propagation analysis is applied to the 18 GHz
retrievals, and limitations and future use are also discussed.

7.2 Model Modification

The radiative transfer equation (Equation 2.5) can also be solved quite easily at 18
GHz for soil moisture and canopy optical depth if the emitting layer temperature is
known.
For 6.6 GHz, Ts is estimated as the soil temperature at 1.25 cm. A procedure for de-
riving this parameter is given in Chapter 4. However, in order to solve the radiative
transfer equation at 18 GHz, an estimate of Ts at this frequency is necessary.
The thickness of the emitting layer is typically described as approximately ”several”
tenths of a wavelength (Schmugge, 1983), and for a frequency of 18 GHz (λ = 1.67
cm), this depth might be estimated at about 0.5 cm. The temperature algorithm
which had been developed for the 6.6 GHz date must therefore be modified.
Equation 4.5 gives the relationship between soil temperature at 1.25 cm depth and 5
cm depth, and is derived from field data as previously described (See Section 3.2.3.2
and 3.2.3.3).
Since no soil temperature data at 0.5 cm depth could be located, Ts was estimated
by extrapolating measurements at known depths. The relationship between mea-
surements at 0.5 cm and 5 cm depth may now be expressed as

Ts[0.5cm] = 1.146Ts[5cm] − 46.008 (7.1)

When combining Equation 7.1 with Equation 4.2, the temperature of the 0.5 cm
emitting layer can be defined as

Ts[0.5cm] = Ts = 0.864Tb(37GHz[V ]) + 48.013 (7.2)

Both day-time and night-time soil moisture and vegetation optical depth were cal-
culated for the 5 test sites using the entire period of the Nimbus/SMMR data set.
The same value for the single scattering albedo and surface roughness, as were used
with the 6.6 GHz signal, were also used here. These values were respectively 0.06 for
the single scattering albedo and 0 for the surface roughness.
For better comparison, the retrieved 18 GHz soil moisture and vegetation optical
depth were averaged over the 6.6 GHz footprint, which is approximately 3 by 3 1

4
degree pixels at 18 GHz.
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The soil input parameters used in the retrieval models were derived from the ISLSCP
and FAO soil data set (See section 3.2.2, for detailed description of these sets).

7.3 Results

A one year time series of satellite derived surface moisture and vegetation optical
depth as derived from the 18 GHz observations are compared to the 6.6 GHz retrievals
and are illustrated in Figures 7.1 and 7.2 for the five test sites.

7.3.1 Vegetation

Vegetation optical depth (Figure 7.2) is shown to exhibit similar trends at both
frequencies, although it is seen to be consistently higher at 18 GHz. The shorter
wavelength at 18 GHz is not able to penetrate the canopy as readily as the radiation
at 6.6 GHz, resulting in higher optical depth values.
This is also observed quite clearly in Figure 7.4, where the optical depth values
observed at the two frequencies are plotted together in the same graph. The slope of
the regression line is near unity, suggesting a more or less constant offset throughout
the range of of observed values.
These results are in agreement with the findings of Kirdiashev et al. (1979) , where it
was concluded that optical depth is inversely proportional to the wavelength. Similar
results were also found by van de Griend and Owe (1994b), in a comparison of optical
depths derived from 6.6 GHz and 37 GHz observations.

7.3.2 Soil Moisture

The retrieved soil moistures also illustrates similar patterns for the two frequencies
(Figure 7.1). Additionally, the overall magnitudes are quite similar. However, certain
differences are also readily observed.
When the values are plotted together in the same graph (Figure 7.3), it is seen that
they are evenly distributed about the 1:1 line when the average soil moisture is above
approximately 20 percent.
However, when the average soil moisture falls below 20 percent, it is noticed that the
18 GHz retrievals begin to fall below the 6.6 GHz values. This can be considered
quite normal, though, since the emitting depth of the microwave radiation at 18 GHz
is much closer to the surface than at 6.6 GHz. As the soil continues to dry, the thin-
ner surface layer defined by the 18 GHz observations will consequently be drier on
average.
The scatter in Figure 7.3 is caused by a variety of effects, like differences in the influ-
ence of the atmosphere on the 18 GHz and 6.6 GHz signals, differences in penetration
depth, and differences in sensitivity to vegetation.

7.3.3 Interrelationships and Errors

The interrelationship between vegetation and soil moisture retrievals was investigated
by an error propagation analysis. It is seen that the error in optical depth retrieval is
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higher for the 18 GHz (Figure 7.5 compared to the 6.6 GHz (Figure 6.3). While this
relationship between the two different sensors is very similar, the errors are somewhat
greater.
Similarly, the standard deviation of the soil moisture retrievals increases as the optical
depth increases (Compare Figure 7.6 with 6.1). Again, while this relationship is
similar to the 6.6 GHz, the errors at 18 GHz are again found to be somewhat higher

7.4 Conclusions and Recommendations

The land surface parameter retrievals from 18 GHz SMMR observations using the
newly developed methodology seem to be reliable, and illustrate that the 19.4 GHz
SSM/I may be used to extend the SMMR soil moisture dataset. The soil moisture
values derived from the 18 GHz signal show the same seasonal trend as the values
derived from the 6.6 GHz signal.
The vegetation optical depth is inversely proportional to the wavelength and there-
fore significantly higher at 18 GHz than at 6.6 GHz.
However it must be remembered, that the higher frequency retrievals will represent
a shallower surface layer, and will also adversely influenced by a much thinner vege-
tation cover.
At a vegetation optical depth of about 0.65 the sensitivity to detect soil moisture is
severely reduced and observations become unreliable.
Also, for frequencies higher than 10 GHz the influence of the atmosphere starts to
become significant, and an atmosphere correction component in the radiative trans-
fer is necessary to get optimum soil moisture and vegetation optical depth retrievals.
It seems that the precipitable water of the atmosphere has a relationship with the
horizontal polarized emissivity and can be used to solve the atmospheric component
in the radiative transfer (Choudhury et al., 1992).
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Figure 7.1: Time series of the soil moisture from 6.6 GHz and 18 GHz for the 5 test sites.
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Figure 7.2: Time series of the vegetation optical depth derived from 6.6 GHz and 18 GHz
for the 5 test site.
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Figure 7.3: The soil moisture derived from the 6.6 GHz signals versus the soil moisture
from 18 GHz. R2 = 0.60, S.E.E. = 0.06 m3 m−3 for 1614 (n) points.
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solid line the regression line. R2 = 0.81, S.E.E. = 0.06 for 1614 (n) points.
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APPLICATIONS

8.1 Introduction

Satellite derived land surface parameters can be used in a variety of applications.
This chapter will discuss some of these and will also suggest others.
The first part will deal with the vegetation optical depth, which is somewhat less
quantifiable than other parameters. Although the optical depth does not lend itself
to be easily measured in the field, it has been shown to be closely related to veg-
etation water content, canopy structure, and biomass (Kerr and Wigneron, 1994).
To demonstrate these relationships, some comparisons will be made between these
parameters and the vegetation optical depth, along with their global distribution.
The second part will deal with the most appealing retrieved parameter, the soil mois-
ture. One of the most important applications for this satellite derived parameter in
current research is its use in General Circulation Models (GCMs). Numerous re-
searchers have already indicated that accurate initialization of soil moisture in fully
coupled GCMs has the potential to greatly increase the accuracy of climatological
and hydrological predictions (Entekhabi et al., 1999; Walker and Houser, 2001).
This chapter however, will concentrate more on the direct monitoring capabilities of
the satellite soil moisture retrievals, such as responses to precipitation.
The last part will deal with the soil temperature, and in particular the use of a time
series analysis on this land surface parameter. A time series analysis can be a pow-
erful tool to quantify the soil temperature dynamics in space and time. A simple
model will be presented and some preliminary results of long-term change detection
will be discussed.

8.2 Global Vegetation Monitoring

8.2.1 Introduction

Passive microwave radiometry has been used over land surfaces, primarily to as-
sess surface soil moisture. However, vegetation canopies significantly influence the
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observed signal and must be taken into account in any soil moisture retrieval algo-
rithm (Kerr and Wigneron, 1994).
Numerous researchers (Jackson et al., 1982; Calvet et al., 1994; Kerr and Wigneron,
1994; Wegmüller et al., 1994; Njoku and Li, 1999) have already demonstrated the
potential of the use of microwave signals for retrieving biophysical parameters such
as vegetation water content, biomass, or leaf area index. Many of these parameters
are not obtainable with visible, near infrared or thermal remote sensing techniques.
However, techniques for using passive microwave radiometry for retrieving vegetation
properties are not fully mature either.
One of the first successful attempts to retrieve vegetation parameters by passive mi-
crowave remote sensing was reported by Jackson and O’Neill (1990) and Jackson and
Schmugge (1991). It was suggested that the vegetation optical depth (τ) could be
written as:

τ = bV WC (8.1)

where b is a constant that depends on the vegetation structure and frequency, and
VWC is the vegetation water content in kg m−2.
Later, Le Vine and Karam (1996) tested this hypothesis with a discrete scatter model
for vegetation, as developed by several authors (Karam and Fung, 1988; Karam et al.,
1992; Lang, 1981; Lang et al., 1986). They concluded that for real canopies, b is also
a function of the vegetation water content.
With the current methodology, it is possible to retrieve vegetation optical depth with
different microwave frequencies (e.g 18 and 6.6 GHz). However, the most important
advantage of this new approach is that it is physically-based and does not require
any ground data or other supporting measurements for calibration purposes.

8.2.2 Global Vegetation Mapping

Global vegetation optical depth maps at 1
4 degree resolution were derived by ap-

plying the model to 6.6 GHz Nimbus/SMMR microwave observations for 1983 (See
Section 5.2). Surface soil temperature was calculated as described previously in
Chapter 4. Soil properties, like wilting point and porosity, were obtained from the
LDAS (Houser et al., 2000; Mitchell et al., 2000) for the United States and from the
ISLSCP (Meeson et al., 1995; Sellers et al., 1995; Zobler, 1986) for the remainder of
the world (See Section 3.2.2).
Data retrieval is not possible under certain conditions, and data cells will typically
be masked out in these situations. Cells falling along coastlines and extending inland
approximately 100 km are not processed because of the influence of water surfaces
on the observed microwave signal (boundary effect; See Section 3.1.1). This phe-
nomenon is illustrated quite clearly in Figure 8.1. Other conditions resulting in no
data retrieval are pixels with snow cover, frozen surfaces, and when vegetation cover
is sufficiently great so as to saturate the signal. In addition, Central Europe has
no reliable data, because the 6.6 GHz microwave retrievals are disturbed by radio
signals. A masking routine (Section 6.3) is applied to the global maps so that all non
processed land data cells are treated uniformly.
Both day-time and night-time optical depth maps are typically produced, with a
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Figure 8.1: A monthly composite of the vegetation optical depth for Australia during July
1983. This image clearly illustrates the boundary effect with the masked pixels (gray) along
the coastlines and surrounding Lake Eyre in the south central site of Australia.

temporal coverage of approximately 5 to 8 day-time and 5 to 8 night-time maps per
month.
Since the optical depth is a function of VWC (Jackson and O’Neill, 1990) , it is also
related to vegetation biomass. Monthly composites of global optical depth were sub-
sequently developed for comparison to other indicators of biomass. NDVI and LAI
were selected, since the NDVI is a good indicator of biomass and the LAI is a physical
parameter that represents vegetation density in m2 leaves per m2 soil. And both are
available as a historical global data product (Los et al., 2000) (See Section 3.1.3 and
3.2.1.1).
Average monthly global images of optical depth are compared to monthly composite
images of both NDVI and LAI for selected months during 1983 (See Figure 8.2 and
8.3). Comparisons are made in the context of a land classification map developed
by Defries and Townsend (1994). This classification map (Figure 8.4) is described in
Section 3.2.1.2. Cover types are defined in Table 8.1.
While all data sets are presented as monthly composites, it is important not to for-
get key differences in the manner in which the data sets are derived and processed.
The optical depth data are true mean pixel values for all available data retrievals in
a given month. The LAI values, on the other hand, are derived from NDVI data,
where the composite image is presented by single values for each pixel (usually the
greatest value) for the given time period. The major drawback of this process, is the
inability to provide temporal resolution within the composite period. Consequently,
values are often overestimated.
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Figure 8.2: Global monthly composites of vegetation optical depth (A and B), NDVI (C and D), and LAI (E and F) representing
January, and April respectively for 1983. Missing data are represented by the color gray .
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Figure 8.3: Global monthly composites of vegetation optical depth (A and B), NDVI (C and D), and LAI (E and F) representing July,
and October respectively for 1983. Missing data are represented by the color gray .
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Figure 8.4: The land cover classification map developed by Defries and Townshend (1994)
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Class Description Mean Min Max Mean Min Max Mean Min Max % of total
τ τ τ NDVI NDVI NDVI LAI LAI LAI Land

Cover

1 broadleaf evergreen forest 0.80 0.80 0.80 0.51 0.44 0.55 5.97 5.97 5.97 8
2 wooded grassland 0.59 0.51 0.67 0.43 0.29 0.54 2.04 0.70 3.91 13
3 shrubs and bare ground 0.34 0.29 0.39 0.18 0.14 0.22 0.56 0.28 1.04 7
4 desert, bare ground 0.21 0.17 0.25 0.10 0.09 0.12 0.28 0.15 0.47 10
5 grassland 0.43 0.36 0.49 0.24 0.14 0.35 0.98 0.25 2.27 14
6 cultivation 0.49 0.39 0.58 0.34 0.18 0.52 1.77 0.37 4.30 9
7 broadleaf deciduous forest 0.55 0.47 0.64 0.37 0.22 0.54 2.11 0.60 4.68 2

and woodland
8 mixed coniferous and 0.54 0.41 0.64 0.40 0.18 0.59 2.64 0.29 5.38 5

broadleaf deciduous forest
and woodland

9 high latitude deciduous 0.68 0.57 0.75 0.32 0.14 0.59 1.66 0.09 5.24 6
forest and woodland

10 coniferous forest and 0.54 0.46 0.61 0.31 0.14 0.54 2.00 0.94 4.67 13
woodland

11 tundra 0.37 0.33 0.40 0.17 0.04 0.33 0.81 0.11 1.79 12
12 Missing Data 1

Table 8.1: Median vegetation optical depth (τ), NDVI, and LAI values for different land covers derived from the Mean, Maximum and
Minimum monthly images of 1983
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The other key difference between the optical depth and NDVI-based data sets is in
the physical nature of the actual radiation signals and how the parameters are de-
rived.
The maps of global optical depth are generally in agreement with the global images
of both NDVI and LAI.
High NDVI and LAI values can be found in the broadleaf evergreen forests (tropical
rain forests) with NDVI values of about 0.5 and LAI values of approximately 6. This
vegetation type is most of the time too dense to retrieve reliable vegetation optical
depth values and are therefore often masked out. However, the remaining pixels of
this vegetation type have τ values close to 0.8.
Low values can be found in the deserts with an average τ of 0.2, NDVI of 0.1 and a
LAI of 0.3.
Major differences between the three global vegetation images can be found on the
African continent. On this continent one can see that the vegetation optical depth
is much less dynamic during a year than the NDVI and LAI. The vegetation optical
depth is largely a function of the VWC and total biomass, and the seasonal variation
of these biophysical properties does not vary as much as the NDVI and LAI.
Another striking example is the eastern area of the U.S. in the Appalachian moun-
tains. The vegetation optical depth stays high the entire year with an average value
of 0.75, while the NDVI and the LAI changes from 0.3 and 0.5 in January to 0.7
and 6 in July. This area is densely forested with mainly hemlock, hickory and oak.
These trees are leafless in winter, resulting in low NDVI and LAI values. However,
the vegetation optical depth stays high, because in winter there is still water left in
the stems and branches of the trees.

8.2.3 Conclusions

Monthly composite images of vegetation optical depth showed good similarity with
the monthly NDVI and LAI composites and also the vegetation classification map of
Defries and Townsend (1994).
Differences between the τ maps and the conventional NDVI and LAI maps were de-
tected mainly in vegetation class 2 and 8 (i.e wooded grassland and mixed coniferous
forest and woodland). In these areas the trees are leafless in winter, resulting in a
distinct seasonal NDVI and LAI patterns. The vegetation optical depth is largely a
function of the VWC and total biomass, and the seasonal variation of these biophys-
ical properties does not vary as much as the NDVI and LAI.
Until now, most of the biophysical data (e.g. LAI or greenness fraction) used in land
surface models, are derived from NDVI data. However, the vegetation index also
has some negative aspects, because it can not retrieve reliable NDVI and LAI data
under cloudy conditions. Another drawback is the compositing process itself, which
is discussed earlier (Section 8.2.2).
The vegetation optical depth can be an important contribution to the derivation of
biophysical properties like VWC and biomass. It can also increase the reliability of
the NDVI derived biophysical data, because the microwave signals penetrate clouds
and the optical depth data product could improve the temporal resolution of bio-
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physical data products.
In combination with the SSM/I data it is also possible to obtain more than 20 years
of global τ data, which can give a significant contribution in climate research.

8.3 Soil Moisture Dynamics

8.3.1 Introduction

Desertification and flooding are complex land degradation processes, which involve
man, the environment and most certainly climate. Additional research is needed to
quantify, assess, and further monitor these processes and other related environmental
changes, such as changes in vegetation type (species composition), fractional ground
cover, surface soil properties, and land use (Choudhury, 1993). The methodologies
described in this research, may provide a quantitative and systematic manner in
which to monitor these changes.
This Section describes an example of environmental change monitoring by apply-
ing the methodologies developed during this research by observing the Indian Mon-
soon. This region experiences seasonal precipitation extremes throughout the year,
which subsequently are reflected in the surface soil moisture. Specific characteris-
tics of the Indian Monsoon are discussed and followed by monthly averaged maps of
satellite-retrieved surface soil moisture. The maps are compared to typical Monsoon
circulation patterns and monthly precipitation totals for the region.

8.3.2 The Indian Monsoon

The monsoon circulation in the tropics is caused by the annual cycle of land-ocean
surface temperature difference along with the seasonal reversal in the sea surface tem-
perature difference between the hemispheres (Rasmusson et al., 1992). The Asian-
Australian monsoon system is the dominant monsoon circulation on the earth. Dur-
ing the winter phase of the monsoon, there is a low-level flow of dry, cool air from the
cold continent to the warmer ocean, and precipitation over land is generally light.
During summer, there is a strong flow of atmospheric moisture from the tropical
ocean to the warmer land, where the upward motion of the heated air produces the
heavy rains of the monsoon season (Hastenrath, 1985).
For the Indian peninsula this results in a climate with a distinct seasonal precipitation
pattern. The precipitation maps in Figure 8.5 and 8.6 give a graphical presentation
of the seasonal climate of this subcontinent. The maps were developed by the Cli-
mate Research Unit and represent a mean monthly 0.5 degree precipitation grid of
1983. A description of this set can be found in Section 3.3.1.
From January till March, during the cool season, the winter monsoon prevails with
air temperatures between 293 K and 298 K, and low precipitation rates ( < 25 mm
month−1). For the hot and dry season (March till May) the temperature rises quickly
above 300 K but the precipitation rate stays below 100 mm month−1. During the
wet season (June-September) the summer monsoon prevails, giving more than 80
% of the annual precipitation, which is approximately 2000 mm year−1. The rain
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Figure 8.5: Mean monthly precipitation (A, B, C, G, H and I) and soil moisture (D, E,
F, J, K and L) composites from the Indian peninsula of 1983. This Figure represents the
first six months.
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Figure 8.6: Mean monthly precipitation (A, B, C, G, H and I) and soil moisture (D, E,
F, J, K and L) composites from the Indian peninsula of 1983. This Figure represents the
last six months.
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migrates from east to west, with the highest precipitation rates along the west coast
as a result of orographic lifting. During this period the temperature drops about 5
K. From October till December the monsoon retreats in a southeasterly direction,
resulting in higher temperatures of about 300 K. However, these values are not as
high as the values during the March-May period (Rao, 1981).

8.3.3 Annual Soil Moisture Changes versus Monsoon Circu-
lation

Soil moisture retrievals were used to compile monthly average soil moisture maps of
the Indian peninsula for 1983 (Figure 8.5 and 8.6). These images give a remarkable
spatial imprint of the Indian monsoon circulation, showing dry values below 0.15 m3

m−3 in April-May and wet values above 0.35 m3 m−3 during the summer monsoon
in August-September. During the first 5 months (January-May) there is almost
no precipitation on the Indian peninsula. In January, the western part of India
starts to dry up, and this drying pattern is moving northeast ward, resulting in an
almost complete dry country in May. Except the south and east coast, still values
above 0.15 m3 m−3 are found. After May the summer monsoon arrives from the
northeast, moving slowly to the southwest with monthly precipitation values beyond
250 mm. Highest soil moisture values can be found in August in central India where
the values are close to saturation (≈ 0.5 m3 m−3). During this wet period the spatial
distribution of the soil moisture of the months July, August and September coincide
very well with the precipitation maps (See Figure 8.6). This, again shows the strong
capacity of the satellite based soil moisture retrieval model to detect wet areas in a
semi arid region.
After September the abundance of precipitation stops and the soil dries quickly, and
in the following three months there are only limited changes in the soil moisture
fields.

8.3.4 Conclusions

The satellite derived soil moisture fields appear to be quite useful for monitoring the
seasonal dynamics of soil moisture at the regional, continental, and even global scale.
The monthly soil moisture maps of the Indian peninsula are seen to illustrate the
typical monsoonal characteristics of the region and exhibit a good correspondence
with monthly rainfall. The satellite based retrieval model seems to be a powerful
tool in the detection of wet areas in semi arid regions.
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8.4 Time Series Analysis on the Surface Soil Tem-
peratures

8.4.1 Introduction

The model-estimated surface soil temperatures for the 5 cm profile correspond well
with field observations from the various measurement sites. Field measurements are
typically quite accurate, but because they are point measurements, they are valid
only for the specific sampling location. Attempts to use sparse field measurements
to calculate large area spatial means, can often result in significant errors. The field
observations used to derive the algorithms in Chapter 4 are from sufficiently dense
sampling networks relative to the microwave footprint size, so as to result in a reliable
methodology for temperature retrieval.
Spatial means of soil temperatures are not only necessary for reliable soil moisture
and optical depth retrievals, they are also more conducive to independent temper-
ature analysis. Surface soil temperature at a 1

4 degree grid scale were calculated
for the continental United States during the entire SMMR period (1978-1987) for a
subsequent time series analysis.

8.4.2 Time Series Analysis

Decomposition of complex cell based time series in simpler periodic components is
a powerful tool to analyze the seasonal behavior of the satellite derived land surface
parameters. Grid cell based time series of the parameters can be defined as I(x, y, t),
where c is the column number or longitude, r is the row number or latitude and t is
the time. I(c, r, t) can be expressed as a linear combination of elementary cosine and
sine functions:

I(c, r, t) = a(c, r)t+ d1(c, r) cos(wnt) + d2(c, r) sin(wnt) + dmean(c, r) (8.2)

where a is the slope or long term trend, d1 to d2 are unknown fitting parameters,
dmean is the 9-year mean value and wn is the frequency which is related to the
periodicity as wn = 2π

Pn
. When the periodicity is known (e.g. a year) the function

can be used to fit the measured data resulting in values for a, d1, d2 and dmean. The
phase-shift (g) or time of peak in the periodicity can be calculated by:

g(c, r) =
arctan(d2(c,r)

d1(c,r)
)

wn
(8.3)

If I(c, r, g) < I(c, r, g + 0.5Pn) half a period must be added to Equation 8.3. Now
the seasonal amplitude (A) can be defined as:

A(c, r) = |(d1(c, r) cos(g(c, r)wn) + d2(c, r) sin(g(c, r)wn))
−(d1(c, r) cos((g(c, r) + 0.5Pn)wn) + d2(c, r) sin((g(c, r) + 0.5Pn)wn))| (8.4)

The value of the seasonal amplitude is twice the value of the amplitude as defined
in wave mechanics, where the amplitude is defined as the distance from the mean
position to the extreme.
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Figure 8.7: Results of a statistical time series analysis of surface soil temperature (5
cm) retrievals from satellite microwave observations for the continental U.S. during the
period 1978 to 1987. The left and right panels correspond with day-time and night-time
observations respectively. Maps A and B illustrate the 9-year average temperature in Kelvin;
C and D the seasonal amplitude of the mean monthly annual course in Kelvin; E and F
the phase-shift (time of peak) with the unit being the date; G and H the long term trend
(slope) in Kelvin per year. Five pixels (numbered) were selected for more detailed analysis.
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Figure 8.8: Three thematic maps of the U.S. obtained from the LDAS web site
(http://ldas.gsfc.nasa.gov/). These maps are a (A) vegetation classification map, (B) clas-
sification map of the soil texture type, and (C) elevation map. The description of the soil
and vegetation classes can be found in Table 8.2.

Class Vegetation description Soil description

1 Evergreen Needleleaf Forest Sand
2 Deciduous Broadleaf Forest Loamy Sand
3 Mixed Cover Sandy Loam
4 Woodland Silt Loam
5 Wooded Grassland Loam
6 Closed Shrubland Sandy Clay Loam
7 Open Shrubland Silty Clay Loam
8 Grassland Clay Loam
9 Cropland Silty Clay
10 Bare land Clay
11 Urban and Built up Organic Materials

Table 8.2: Description of the soil and vegetation classes, as given in Figure 8.8.
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Figure 8.9: Difference (in days) between the night-time (Figure 8.7 F) and day-time
(Figure 8.7 E) phase-shift of the soil temperature at 5 cm depth.

8.4.3 Application to the Continental United States

A time series analysis, as previously described, was conducted with the 5 cm soil tem-
perature for the entire SMMR period of record. Soil temperatures were derived from
37 GHz vertical polarization data according to the procedure described in Chapter
4.
To reduce the computing time, monthly averages were calculated. The periodicity
(Pn) is set to 12 months and the time series analysis is applied to 106 months of
Ts[5cm] (i.e. from November 1978 to August 1987). The unknown parameters a, d1,
d2 and dmean are solved by multiple linear regression analysis, resulting in a 9-year
mean (dmean), a seasonal amplitude (A), a phase-shift (g), and a long term trend
(a) of the day-time and night-time Ts[5cm]. Figure 8.7 shows the resulting maps.
Topographical, vegetation, and soil maps are provided (Figure 8.8) to assist in the
interpretation of the time series analysis.
From the time series analysis maps (Figure 8.7), five pixels were selected based on
differences in the time series analysis components. To illustrate the performance of
the time series model and to compare the differences between the pixels they were
plotted in time in Figure 8.10.
The 9-year mean soil temperatures (5 cm) for the continental United States illustrate
typical spatial distributions as expected (Figure 8.7 A and B). The highest day-time
temperatures were found in the Southwest extending into Mexico, while the low-
est average day-time temperatures were found in the Northeast (and southeastern
Canada), northern midwest and the higher elevations of the Rocky Mountains.
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Figure 8.10: The time series of the soil surface temperature for the 5 selected pixels
(as marked in Figure 8.7). The circles in combination with the dashed line represent the
satellite derived monthly average Ts values at 5 cm depth, and the solid line is the time
series analysis model.
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Mid-range temperatures are found in the northern Great Plains region mostly with
cropland vegetation and the Southeast. The Florida peninsula remains somewhat
cooler as a result of the maritime influence, as does the Mississippi valley.
9-year average night-time temperatures display similar patterns, with the lowest tem-
peratures in the Northeast and in the mountains. The Northeast region in Canada
is often covered with evergreen needleleaf forest and the predominate soil type is
sandy loam. The average nighttime high temperatures, however, are more widely
distributed throughout the Southwest, Southeast, western coastal region, and the
southern, central and northern Great Plains.
The seasonal amplitude corresponds to the annual range in mean monthly tempera-
ture and are presented in Figure 8.7 C and D. The highest day-time values are seen
to occur in the central to northern plains and mountain ranges, the Northeast, and
lower Mississippi Valley. The Mississippi Valley is mostly covered with cropland and
along the river the main soil type is clay. The lowest day-time values occur in the
southeast and coastal areas of western Mexico, where the area is covered with wood-
land on a loam/sandy clay loam soil. An other area with low values is the Northwest
of the U.S. where the vegetation is dominated with evergreen needleleaf forest on a
sandy loam soil. The range of night-time temperatures demonstrates similar spatial
patterns, although the dynamic range is significantly lower.
The phase-shift or time of peak (Figure 8.7 E and F) illustrates the spatial and tem-
poral distribution of when the annual temperature cycle reaches its maximum. This
period covers about 45 days ( 15 June to 1 August) throughout the region for the
day-time peak and about 30 days (15 July to 15 August) for the night-time peak.
The earliest day-time peak temperatures are seen to occur in the southern-most re-
gions west of Mississippi. The time of peak occurs progressively later with an increase
in latitude, as one would expect. This trend is influenced slightly by elevation, as is
observed in the Rocky Mountain regions and along the Sierra Nevada and Cascade
ranges on the West Coast. In the east, including coastal waters, the Mississippi Val-
ley and the Allegheny Ridge.
The night-time time of peak also occurs later as latitude increases, for the most part,
but also appears to be influenced significantly by coastal waters and elevation.
The night-time peak temperature typically occurs sometime after the day-time peak
(Figure 8.9). This lag time may be due to the heat capacity of the soil. Some of
the heat that is absorbed by the soil during the day from incoming solar radiation is
directed downward into the soil profile. As the lower soil profile heats up, the mag-
nitude of the downward soil heat flux steadily decreases, and the night-time surface
temperature will eventually attain a maximum.
The lag time will be affected by a number of geo- and biophysical and geographic
influences, such as soil moisture, vegetation, elevation, and climatology. This differ-
ence is observed to be anywhere from 0 to about 9 days for most of the continental
U.S. and surrounding region. However, the difference may be as much as 14 days
in some locations. While these greater differences are seen to be almost randomly
located in small patches throughout much of the region, several extended uniform
areas are also observed. These areas include almost all of Mexico and extending into
southern Arizona and New Mexico; the northern Texas Panhandle; almost the entire
Florida peninsula; the upper Midwest region of Iowa, Minnesota and extending into
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Canada; and the entire Allegheny ridge, extending through central Pennsylvania, the
southern Tier of New York, and north into Canada. Equally noticeable, are extended
areas with little or no difference in the time of occurrence of day-time and night-time
peaks. These include the northern High Plains, the extended Mississippi Valley and
virtually all of New England.
Decreases in the monthly day-time means were observed throughout the Southwest,
southern, middle and northern Great Plains, and some areas in the Northeast and
Southeast. Increases in monthly day-time means were noticed in the Midwest, south-
eastern Great Plains, and regions in the northern Rocky Mountains. Increases in
the night-time monthly means was noticed in the northern Midwest, along the Ap-
palachian Mountains, and in patchy locations along a line extending from north-
western Mexico northeastern Oklahoma (See Figure 8.7 G and H). The driving force
behind the long term cooling and warming of the U.S. is unknown and remains a
topic for future research.
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SUMMARY AND CONCLUSIONS

This chapter is a summary of:

Retrieval of Land Surface Parameters using Passive Microwave Remote
Sensing.

9.1 General

The primary objective of this study was to develop a methodology to retrieve global
soil moisture from satellite microwave observations. The approach was to a retain
strong physical basis by using a radiative transfer equation, applicable at any wave-
length, and not require any form of calibration based on other ground measurements
of soil moisture. Reliance on any prior calibration procedures would introduce a
regional dependency to this methodology and consequently limit its global applica-
bility.
Three key unknowns remained in the radiative transfer equation; surface soil tem-
perature, surface soil moisture, and vegetation optical depth. A non-linear iterative
procedure, in a forward approach, was used to solve the radiative transfer equation.
However, solving for all three variables simultaneously presented a mathematical
challenge, resulting in frequent convergence problems.
It was decided to solve for surface soil temperature off-line, and use the above-
described procedure with the remaining two variables. This approach proved to
be highly successful.
There are many applications that can utilize the land surface parameters that are
derived from this retrieval model. Several common examples have been provided.
The retrieved parameters may be used to study soil moisture, surface soil tempera-
ture, and vegetation optical depth at a variety of spatial scales, including regional,
continental, and global, and temporally, at both inter-and intra annual time scales.
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9.2 Soil Temperature

Surface soil temperature is an extremely important variable in solving the radiative
transfer equation for soil moisture. While the surface temperature model is inher-
ently sound, it is regression-based, and its accuracy is limited by the availability of
ground observations used for calibration.
Soil temperature retrieval within North America can probably be considered the most
accurate, because most of the ground data used for calibration/validation are from
this region. Consequently, overall model performance and the retrieval of the remain-
ing parameters will probably also reflect this fact. Validation with additional surface
soil temperature data sets in different environments, should lead to improvements in
model performance.
The surface soil temperature is derived from vertical polarized 37 GHz brightness
temperature. It has been shown that the brightness temperature at this frequency
and polarization is predominantly a function of soil temperature and is not markedly
influenced by the atmosphere or soil moisture.
The brightness temperatures were compared with field soil temperatures at 5 cm
depth from Oklahoma, and a linear relation between those two parameters was de-
veloped. Temperatures of the emitting layer were retrieved by using the satellite
derived soil temperature at 5 cm depth in combination with an interpolation tech-
nique. The interpolation technique was based on soil temperature observations at
both 1.25 cm and 5 cm from Maryland (BARC) and Botswana.

9.3 Soil Moisture and Vegetation Optical Depth

Microwave vegetation optical depth may be a highly useful tool for monitoring various
biophysical aspects of vegetation. While this parameter has some distinct advantages
over visible/near infrared instruments, such as all-weather capability, it is not meant
to replace these. Because these various parameters are derived from different sensors,
and hence, are a response to totally different biophysical properties, they should com-
plement each other. When taken together, their interpretation should yield a more
accurate picture of vegetation biophysical characteristics.
Soil moisture retrieval by microwave has been shown to be the most reliable remote
sensing technique, since the up-welling microwave energy is a direct response to the
absolute water content in the soil. The retrieval method presented here, is a direct
radiative transfer approach, and requires no calibration based on geographic location,
vegetation biophysical properties, or other ground-based data sets of soil moisture.
It appears to be the first technique of its kind to successfully retrieve space-based
estimates of absolute soil moisture at the global scale.
While the approach has definite limitations, these are the result of the inherent limita-
tions which define microwave physics, and are not a function of the model. Optimum
model performance can be expected to coincide with the use of optimum microwave
sensor data, which is known to be at the L-band wavelength. The model may be
directly applied to the new AMSR observations, which are expected to be highly sim-
ilar to the SMMR data utilized for this study. Some improvement may be realized,
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however, as a result of the improved spatial resolution of the new radiometer.
Soil moisture and vegetation optical depth are retrieved from dual polarized mi-
crowave brightness temperature observations, and were applied to 6.6 GHz SMMR
data.
Some assumptions regarding the different elements of the radiative transfer equation
are made in order to reduce the number of variables. The model assumes a constant
value for the scattering albedo, based on a series of previous studies. A soil roughness
parameter is also not included because it has been hypothesized that roughness has a
minimal effect at satellite scale. Days with snow cover or when surface temperatures
were below zero were eliminated from the analysis.
A non-linear iterative approach is used to solve for the surface moisture and vegeta-
tion optical depth, both of which are derived from the soil dielectric constant.
The model was applied to several sites with observations of surface moisture, located
in the U.S., Mongolia and Turkmenistan. Time series of the satellite-derived surface
moisture compared well with the available ground observations and precipitation
data. The vegetation optical depth showed similar seasonal patterns as the NDVI.

9.4 Model Sensitivity

An error propagation analysis was applied to the satellite derived land surface pa-
rameters from the U.S. and Eurasian study sites. The standard deviation of the
retrieved surface soil temperature was small and on average 1.2 degrees Kelvin for
all test sites. The standard deviations of the retrieved soil moisture were high when
the vegetation optical depth is high. The soil emission is attenuated by vegetation,
and when the vegetation density increases, the sensitivity of the microwave sensor to
retrieve soil moisture information will decrease.
Low soil moisture values also have high standard deviations. These high deviations
were due to the low sensitivity of the dielectric of the soil on soil moisture when it is
dry
Optimum results in the detection of accurate soil moisture with the satellite retrieval
model can be obtained with high soil moisture values under sparse vegetation.
Compared with wet conditions, the uncertainty of the vegetation optical depth is high
at dry conditions. This phenomenon also has a theoretical basis. At low moisture
conditions, the soil emission is high and the additional contribution to the overall
observed emissivity from low levels of vegetation is also low. As soil moisture in-
creases, the soil cools and the emission becomes lower, the relative contribution of
the vegetation of the overall observed emissivity becomes more significant.
To increase the reliability of the retrieved land surface parameters, a masking routine
has been applied. This consists of a pixel masking for pixels with snow cover, frozen
soil and excessive dense vegetation cover. Pixels with snow were detected with a
difference algorithm and frozen soils with the newly developed surface soil temper-
ature algorithm. Beyond a vegetation optical depth of 0.8 the satellite retrieval
model doesn’t generate reliable soil moisture and vegetation optical depth informa-
tion anymore and under these circumstances both the vegetation optical depth and
soil moisture were masked out.
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9.5 Wavelength Effects

The land surface parameter retrievals from 18 GHz observations appear to be con-
sistent with the 6.6 GHz results in most instances, therefore supporting the use of
the 19.4 GHz observations form SSM/I to extend the soil moisture and optical depth
data base. However, the limitations of the higher frequency observations are signifi-
cantly greater.
First, the penetration depth of 18/19.4 GHz observations is probably less than 0.5
cm. Also, since the ability to detect changes in soil moisture is severely reduced at an
optical depth above 0.65 and since vegetation optical depth is inversely proportional
to the wavelength, an optical depth of 0.65 corresponds to a much thinner canopy
layer at 18 GHz than at 6.6 GHz.
Additionally, atmospheric influences, primarily precipitable water, becomes more
significant at frequencies above 10 GHz. In order to optimize surface soil moisture
retrievals, it is strongly recommended that an atmospheric correction component be
added when using higher frequency observations.

9.6 Applications

While the primary objective of this study was the development of the land surface
parameter retrieval algorithm, examples of potential applications for these parame-
ters were also demonstrated and discussed.
Time series of vegetation optical depth were compared to both NDVI and LAI. While
the long term trend between optical depth and the other two parameters compared
well, some differences were also observed. These differences are expected, however,
because microwave and visible/near infrared respond to different biophysical char-
acteristics and energy sources. Additionally, visible/near infrared measurements are
typically reported as a composite over time (usually 15 days or monthly) because
of frequent adverse atmospheric effects. Optical depth measurements, on the other
hand, are less affected by the atmosphere and therefore may provide information on
vegetation characteristics at improved temporal resolution. Both microwave and vis-
ible/near infrared data products provide information on various aspects of vegetation
growth characteristics, and information retrieval may be maximized when they are
taken together.
While spatially averaged surface temperature is extremely important for solving the
radiative transfer equation, it is also a valuable tool by itself. Surface temperature
can be especially useful for global studies of land surface cover characteristics and
other long term environmental changes.
Regular observations of spatially representative surface soil moisture may be ex-
tremely useful for studies of meteorological phenomena and long term environmental
changes such as global climate change, studying the effects of land use change, and
in the validation of general circulation models. It has also been determined that
accurate initialization of land surface moisture is critical for seasonal-to-interannual
climatological and hydrologic prediction.
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9.7 Follow-up Studies

A number of logical follow-up studies have been identified during this investigation,
and are described briefly below.

Additional soil temperature-brightness temperature studies
Improvements to the surface temperature algorithm should significantly improve the
accuracy of the soil moisture and optical depth retrievals. The temperature model
is currently based only on measurements from Oklahoma, Maryland, and Botswana.
Efforts to identify additional data sets of near-surface temperature observations made
under a variety of different surface cover conditions will be made, while recommenda-
tions to modify on-going and planned field experiments to include such measurements
will also be made. Application of the retrieval model to new sensor platforms such
as AMSR and SMOS will be significantly enhanced by improvement in surface tem-
perature estimation.

Global studies of surface temperature
The surface soil temperature data set will be extended with retrievals from vertical
polarization 37 GHz observations form SSM/I to yield a 25 year record. Long term
studies of global surface temperature could be useful in studies of global warming,
by identifying temperature changes in environmentally sensitive locations.

Atmospheric correction for higher frequency brightness temperature above
10 GHz
Horizontal polarization brightness temperature at frequencies above 10 GHz are sub-
ject to atmospheric influences, especially from precipitable water in the atmosphere.
The effect on the horizontal brightness temperature can be as large as 10 Kelvin in ex-
treme cases, indicating a strong need to apply an atmospheric correction. Microwave
data from both TRMM and SSM/I will be corrected for atmospheric precipitable
water before use in the retrieval model.

Application of the land surface data retrieval model to SSM/I and TRMM
observations
The global surface soil moisture and optical depth data sets will be extended until
the present term with SSM/I and TRMM observations.

Retrieval model application to AMSR
The retrieval model will be applied to observations from the Advanced Microwave
Scanning Radiometer (AMSR) on board both the Advanced Earth Observing Satel-
lite II (ADEOS-II) and AQUA, when these data become available. These sensor
missions are supported by elaborate field campaigns, which should provide excellent
ground data observations for improved model validation.

Analysis of global surface soil moisture
The 25+ year history of global surface soil moisture will be analyzed for existing
spatial and temporal trends by a variety analysis techniques such as fourier analysis
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and other trend analysis techniques. Such studies may provide information about cli-
mate change and climate anomalies such as El Niño-Southern Oscillation, especially
in combination with the derived vegetation and soil temperature information.

Analysis of global vegetation optical depth
The microwave vegetation optical depth has a strong physical relationship with veg-
etation water content and possibly plant geometry and biomass of the overlying
canopy. Attempts to derive biophysical properties from vegetation optical depth
have been limited and largely empirical, for the most part. An effort will be made
to derive a more physically based interpretation for the vegetation optical depth
and also develop more physically based retrieval techniques for related vegetation
biophysical parameters.
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SAMENVATTING EN
CONCLUSIES

Dit hoofdstuk is een samenvatting van:

Bepaling van Landoppervlakteparameters uit Teledetectie van Passieve
Microgolven.

10.1 Algemeen

De hier gepresenteerde studie onderzoekt de vraag of het mogelijk is om een tech-
niek te ontwikkelen om op regionale, continentale of op globale schaal bodemvocht te
bepalen met behulp van satellietwaarnemingen in het microgolvenbereik. Deze tech-
niek moet fysisch onderbouwd zijn door middel van de theorie van stralingstransport
en toepasbaar zijn bij verschillende golflengten, zodat de techniek bruikbaar is bij
verschillende microgolfinstrumenten. Verder moet de techniek onafhankelijk zijn van
veldwaarnemingen van bodemvocht. Want wanneer de techniek met veldwaarne-
mingen aan calibratie technieken gekoppeld zou zijn, dan wordt er een regionale
afhankelijkheid gecreëerd en verliest de techniek zijn globale toepasbaarheid.
De stralingstransportvergelijking in het microgolvenbereik heeft drie belangrijke on-
bekenden; de bodemtemperatuur, het bodemvocht en de optische diepte van de ve-
getatie.
Een niet lineaire iteratieve procedure werd opgezet om de stralingstransportverge-
lijking op te lossen. Dit is niet eenvoudig, want het tegelijkertijd oplossen van de
drie onbekenden resulteert vaak in convergentieproblemen. Daarom werd er besloten
om de bodemtemperatuur apart te bepalen en de andere twee variabelen met de hier
bovenstaande procedure op te lossen. Deze benadering bleek uiterst succesvol te zijn.
Er zijn verschillende toepassingen te bedenken voor de verkregen landoppervlakte-
parameters (dit is een verzamelnaam voor de bodemtemperatuur, bodemvocht en de
optische diepte van de vegetatie). In dit proefschrift worden een aantal toepassingen
voor de drie parameters aangeleverd en anderen worden besproken. De verkregen
resultaten kunnen worden gebruikt om de drie parameters te bestuderen op verschil-
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lend spatieel (bijvoorbeeld regionaal, continentaal of globaal) maar ook op verschil-
lend temporeel (bijvoorbeeld seizoenaal of interjaarlijks) niveau.

10.2 Bodemtemperatuur

De bodemtemperatuur is een belangrijke parameter in het oplossen van de stralings-
transportvergelijking voor bodemvocht. In deze studie is er een op zichzelf staand
bodemtemperatuurmodel ontwikkeld. Alhoewel het bodemtemperatuurmodel stabiel
is, is het gebaseerd op regressie en is zijn nauwkeurigheid gelimiteerd aan de beschik-
baarheid van grondobservaties die nodig zijn om het model te calibreren.
De uit het model verkregen bodemtemperatuur in Noord Amerika is waarschijn-
lijk het meest betrouwbaar omdat de meeste grondobservaties die gebruikt zijn
voor calibratie en validatie van het model daar vandaan komen. Dit heeft in alle
waarschijnlijkheid ook effect op de prestatie van het bodemvochtmodel en de daarbij
verkregen parameters. De prestatie van zowel het bodemtemperatuuurmodel en het
bodemvochtmodel zal verbeterd worden bij het gebruik van aanvullende bodemtem-
peratuur datasets uit verschillende gebieden.
De bodemtemperatuur is verkregen uit vertikaal gepolarizeerde 37 GHz helderheids-
temperaturen. Het is aangetoond dat helderheidstemperaturen van deze frequentie
en polarisatie sterk gerelateerd zijn aan de bodemtemperatuur. Deze relatie wordt
niet zichtbaar verstoord door veranderingen in de atmosfeer of bodemvocht.
De helderheidstemperaturen werden vergeleken met veldwaarnemingen uit Oklahoma
van bodemtemperaturen op 5 cm diepte. Er werd een lineaire relatie tussen deze 2
parameters waargenomen. De temperatuur van de uitstralende laag bij 6.6 GHz (dit
is de parameter die nodig is als invoer voor het bodemvochtmodel) werd gemodeleerd
met behulp van de satelliet gerelateerde bodemtemperaturen op 5 cm in combinatie
met een interpolatietechniek. De interpolatietechniek was gebaseerd op bodemtem-
peratuur observaties in Maryland (afkomstig van het Beltsville Agricultural Reseach
Center, BARC) en Botswana op 1.25 cm en 5 cm diepte.

10.3 Bodemvocht en Vegetatie

Om verschillende biofysisiche aspecten van de vegetatie te monitoren kan heel goed
gebruik gemaakt worden van de optische diepte van de vegetatie in het microgol-
venbereik. Deze parameter heeft een aantal voordelen ten opzichte van vegetatie
parameters die verkregen zijn uit zichtbare/nabij infrarode instrumenten. Zo kan de
optische diepte van de vegetatie onder alle weersomstandigheden bepaald worden.
Het gebruik van alleen de optische diepte van de vegetatie voor het monitoren van de
vegetatie geeft echter niet het optimale resultaat. Dit heeft te maken met het feit dat
de optische diepte van de vegetatie op andere biofysische eigenschappen reageert dan
vegetatie parameters verkregen uit zichbare/nabij infrarode instrumenten. Gecom-
bineerd zullen deze parameters een breder en beter beeld geven van de biofysische
karakteristieken van de vegetatie.

– 94 –



Samenvatting en Conclusies

Bewezen is dat het verkrijgen van bodemvocht uit microgolven de meest betrouw-
bare techniek in de teledetectie is. Dit komt omdat de omhooggaande energie in het
microgolvenbereik direct gerelateerd is aan het absolute watergehalte van de bodem.
De getoonde techniek is gebaseerd op de theorie van de stralingstransport, en cali-
bratie van het model in welke vorm dan ook (bijvoorbeeld met veldwaarnemingen
van bodemvocht of vegetatie) is niet nodig. Het blijkt de eerste techniek te zijn in
zijn soort die succesvol ruimtelijk bodemvocht schat op een globale schaal.
Alhoewel het model zijn beperkingen heeft in het oplossen van de landoppervlakte-
parameters, zijn deze beperkingen inherent gekoppeld aan microgolvenfysica, en zijn
geen functie van het model zelf. Optimale uitvoering van het model kan verwacht
worden met L-band microgolven data. Het model kan direct worden gebruikt op
de nieuwe Advanced Microwave Scanning Radiometer (AMSR) observaties. De
verwachting is dat deze observaties overeenkomstig zijn met de in deze studie ge-
bruikte Scanning Multichannel Microwave Radiometer (SMMR) observaties. Door
het toedoen van een hogere spatiele resolutie van deze nieuwe sensor zullen er wel
wat kleine model aanpassingen moeten plaatsvinden.
Bodemvocht en de optische diepte van de vegetatie zijn verkregen uit tweevoudig
gepolarizeerde helderheidstemperatuur observaties in het microgolven bereik. Voor
deze studie werd het model toegepast op 6.6 GHz SMMR helderheidstemperaturen.
Om de hoeveelheid variabelen te reduceren, zijn er verschillende aannames gemaakt
bij de stralingstransportvergelijking. Het model neemt aan dat de single scattering
albedo gelijk blijft. De waarde van deze parameter is verkregen uit de literatuur.
De invloed van de ruwheid van de bodem op het microgolvensignaal is verwaarloosd
omdat er wordt aangenomen dat de ruwheid een minimaal effect heeft wanneer er
op satellietschaal gekeken wordt. Dagen met sneeuw of vorst zijn ook uit de analyse
verwijderd.
Er werd een niet lineaire iteratieve techniek toegepast om voor de bodemvocht en
optische diepte van de vegetatie op te lossen. Beiden werden bepaald aan de hand
van de diëlectrische constante van de bodem.
Het model werd toegepast op verschillende gebieden met veldobservaties van bodem-
vocht. Deze gebieden konden gevonden worden in de Verenigde Staten, Mongolië en
Turkmenistan. De tijdseries van de met behulp van de satelliet verkregen bodemvocht
kwam goed overeen met de veldobservaties van bodemvocht en neerslag. De opti-
sche diepte van de vegetatie had vergelijkbare seizoenale patronen als de Normalized
Difference Vegetation Index (NDVI).

10.4 Gevoeligheid van het Model

Een fouten analyse werd toegepast op de uit satellietwaarnemingen verkregen land-
oppervlakteparameters van testlocaties uit de Verenigde Staten en Eurazië. De stan-
daard deviatie van de bodemtemperatuur was klein en gemiddeld 1.2 graden Celcius
voor alle testlocaties. De standaarddeviatie van het verkregen bodemvocht was hoog
bij een hoge optische diepte van de vegetatie. De uitstralende energie van de bodem
wordt verzwakt door de vegetatie en bij een groeiende vegetatie dichtheid wordt de
gevoeligheid van de microgolvensensor om bodemvocht te meten verkleind.
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Lage bodemvocht waarden hebben ook hoge standaarddeviaties. Deze hoge deviaties
werden vooral veroorzaakt door de lage gevoeligheid van de diëlectrische constante
van de bodem ten opzichte van bodemvocht tijdens droge condities.
Optimale detectie van bodemvocht met het satelliet model kan verkregen worden met
hoge bodemvocht waarden onder een schaarse begroeïıng.
In vergelijking met natte condities is het model om de optische diepte van de ve-
getatie te bepalen minder nauwkeurig in droge situaties. Dit fenomeen heeft ook
een theoretische grondslag. Bij droge condities is de bodem emissiviteit hoog en de
contributie van vegetatie op de bodememissiviteit is dan laag. Als het bodemvocht
toeneemt dan zal de bodememissiviteit afnemen en de contributie van de vegetatie
op de emissiviteit weer toenemen.
Een maskeer routine is toegepast om de betrouwbaarheid van de verkregen landop-
pervlakteparameters te vergroten. Deze routine bestaat uit een techniek om pixels
met sneeuwbedeking, pixels met vorst, en pixels met een te dikke vegetatiebedekking
te elimineren. Pixels met sneeuw werden gedetecteerd met een verschilalgorithme en
pixels met bevroren bodems werden gevonden met het nieuw ontwikkelde bodem-
temperatuurmodel.
Bij een optische diepte van de vegetatie tot 0.8 geeft het op satellietwaarnemingen
gebaseerde model nog betrouwbare bodemvocht en vegetatie informatie. Pixels die
in eerste instantie een optische diepte van 0.8 of meer genereerden werden uit de
procedure gehaald.

10.5 Golflengte Effecten

De verkregen landoppervlakteparameters uit 18 GHz data bleken overeen te komen
met de resultaten uit de 6.6 GHz data. Dit resultaat ondersteunt het idee om de
19.4 GHz observaties van de Special Sensor Microwave Imager (SSM/I) sensor te
gebruiken om de bodemvocht en vegetatie database uit te breiden. Echter, bij deze
hoge frequentie observaties zijn er meer beperkingen.
Ten eerste is de penetratiediepte van de 18/19.4 GHz observaties ongeveer 0.5 cm.
Verder kunnen er slechts betrouwbare veranderingen in bodemvocht geregistreerd
worden bij een waarde van de optische diepte van de vegetatie van onder de 0.65.
Deze waarde representeert bij 18 GHz een dunner vegetatiedek dan bij 6.6 GHz, want
de optische diepte van de vegetatie is omgekeerd evenredig met de golflengte.
Daarbij komt ook dat de invloed van de atmosfeer, waarbij met name de hoeveelheid
waterdamp een rol van betekenis speelt, significant gaat worden bij frequenties boven
de 10 GHz. Bij deze hogere frequentie observaties wordt daarom ook ten zeerste
aangeraden om een atmosferische correctiecomponent in het model in te voeren om
zo optimaal bodemvocht uit de microgolven data te halen.

10.6 Toepassingen

Naast het primaire doel van dit onderzoek, wat de ontwikkeling van een landopper-
vlakteparameter model was, zal dit proefschrift ook een aantal potentiële toepassin-
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gen demonstreren en bespreken.
Tijdseries van de optische diepte van de vegetatie werden vergeleken met NDVI en
Leaf Area Index (LAI) data. Naast de vele overeenkomsten werden er ook een aantal
verschillen geconstateerd. Deze verschillen waren voorspeld omdat microgolven an-
ders reageren op biofysische karakteristieken dan zichtbaar/nabij infrarood metingen.
Verder worden de zichtbaar/nabij infrarood waarnemingen vaak als een compositie
in tijd gepresenteerd (bijvoorbeeld als een 15 dagen of maandelijks gemiddelde). De
data wordt zo gepresenteerd om de ongunstige atmosferische effecten te minimalise-
ren. De metingen van de optische diepte van de vegetatie in het microgolvenbereik
hebben veel minder last van atmosferische effecten en kunnen daardoor vegetatie in-
formatie verschaffen over een veel betere temporele resolutie.
Naast het feit dat de bodemtemperatuur een hele belangrijke parameter is in het
oplossen van de stralingstransportvergelijking, biedt het ook andere interessante
toepassingen. Zo kan de bodemtemperatuur een belangrijke bijdrage leveren in glo-
bale studies die zich bezig houden met de detectie van temperatuurveranderingen in
combinatie met het broeikas effect.
Regelmatige observaties van ruimtelijk representatief bodemvocht is erg nuttig voor
studies die zich bezig houden met micrometeorologische fenomenen zoals klimaatveran-
dering maar ook landoppervlakveranderingen, en studies die zich bezig houden met
de validatie van Globale Circulatie Modellen (GCMs). Zo is bijvoorbeeld al vast-
gesteld dat om betrouwbare klimatologisch en hydrologische voorspellingen te maken,
nauwkeurige initialisatie van bodemvocht noodzakelijk is.

10.7 Vervolgstudies

Tijdens dit onderzoek zijn er een aantal vervolgstudies gëıdentificeerd en een aantal
worden hieronder kort besproken.

Uitgebreide bodemtemperatuur helderheidstemperatuur studies
Verbeteringen in het bodemtemperatuurmodel zal de nauwkeurigheid in het verkrij-
gen van bodemvocht en optische diepte significant verbeteren. Het bodemtempera-
tuurmodel is momenteel alleen gebaseerd op waarnemingen uit Oklahoma, Maryland,
en Botswana. Pogingen om nieuwe datasets van bodemtemperatuur waarnemin-
gen van de top laag onder verschillende ecologische condities te bemachtigen zullen
gemaakt gaan worden. Ook zal er worden aanbevolen om bij huidige en toekomstige
veldexperimenten deze parameter te gaan meten. Het toepassen van het bodem-
temperatuur model in nieuwe sensor platformen zoals de Soil Moisture and Ocean
Salinity Mission (SMOS) en AMSR zal de bepaling van bodemtemperatuur aanzien-
lijk verbeteren.

Globale bodemtemperatuur studies
De dataset van bodemtemperatuur zal vergroot worden met verkregen data afkom-
stig van de vertikaal gepolarizeerde 37 GHz observaties van SSM/I wat zal resulteren
in een database van ongeveer 25 jaar. Deze lange tijdreeks kan dan gebruikt worden
om bijvoorbeeld temperatuur veranderingen te detecteren in ecologisch gevoelige ge-
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bieden.

Atmosferische correctie voor helderheidstemperaturen boven de 10 GHz
frequentie
Horizontaal gepolariseerde helderheidstemperaturen bij een frequentie boven de 10
GHz zijn gevoelig voor atmosferische invloeden, met name waterdamp. In extreme
gevallen kan waterdamp in de atmosfeer voor een verandering van 10 graden Celcius
zorgen, wat aangeeft dat een atmosferische correctie noodzakelijk is. Microgolvendata
van de Tropical Rainfall Measuring Mission (TRMM) en SSM/I zullen gecorrigeerd
moeten worden voor waterdamp voordat ze in het bodemvocht- en vegetatiemodel
gebruikt kunnen worden.

Toepassing van het landoppervlaktemodel op SSM/I en TRMM obser-
vaties
De datasets van globale bodemvocht en optische diepte van de vegetatie zullen wor-
den uitgebreid met recente data met behulp van de SSM/I en TRMM observaties.

Toepassing van het landoppervlaktemodel op AMSR
Wanneer de data beschikbaar komt, zal het landoppervlaktemodel worden toegepast
op observaties van AMSR. Dit instrument is te vinden op de Advanced Earth Ob-
serving Satellite II (ADEOS II) en AQUA satelliet. Deze sensor missies worden
gecombineerd met uitgebreide veldcampagnes. De veldwaarnemingen tijdens deze
campagnes kunnen leiden tot verbeterde model validaties.

Analyse van globale bodemvocht
De meer dan 25 jaar geregistreerde geschiedenis van globale bodemvocht zal geanaly-
seerd worden op spatiele en temporele trends met behulp van verscheidene technieken
waaronder Fourier analyse en andere trend detectietechnieken. Dit soort studies kun-
nen informatie verschaffen over globale veranderingen en klimaatanomalien zoals El
Niño-Zuidelijke Oscillatie.

Analyse van globale optische diepte van de vegetatie
De optische diepte van de vegetatie in het microgolven bereik heeft een sterke fysische
relatie met het watergehalte van de vegetatie, geometrie van de plant, en biomassa.
Tot nu to zijn er nog weinig pogingen gedaan om biofysische eigenschappen uit de
optische diepte te halen en de pogingen die er gedaan zijn, zijn hoofdzakelijk em-
pirisch van aard. Er zal geprobeerd worden om met behulp van de microgolven
fysica biofysische parameters uit de optische diepte van de vegetatie te halen.
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Appendix A

WANG-SCHMUGGE MODEL

In the Wang-Schmugge model (1980) the dielectric constant ε of a soil-water mixture
is described as

ε = θ · εx + (P − θ) · εa + (1− P ) · εr, θ ≤ θt (A.1)

with

εx = εi + (εw − εi) · θ
θt

· γ (A.2)

and

ε = θt · εx + (θ − θt) · εw + (P − θ) · εa + (1− P ) · εr, θ > θt (A.3)

with

εx = εi + (εw − εi) · γ (A.4)

Where θ is the volumetric water content [m3 m−3] of the soil, P the porosity of the
dry soil (total volume occupied by pores per unit volume of soil), γ is an empirical
parameter, and θt is the transition moisture [m3 m−3]. εa, εw, εr and εi, in sequential
order, are the dielectric constants of air, water, rock and ice. εx stands for the
dielectric constant of the initially absorbed water.
The transition moisture is defined as the moisture content at which the free water
phase begins to dominate the soil system and can be described as

θt = 0.49 ·WP + 0.165 (A.5)

Where WP is the wilting point of the soil in [m3 m−3]. When WP is unknown
but there is information about the particle size distribution of the soil, WP can be
redetermined as

WP = 0.06774− 0.00064 · SAND + 0.00478 · CLAY (A.6)

where SAND and CLAY are the sand and clay contents in percent of dry weight of a
soil.
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γ can be estimated by

γ = 0.57 ·WP + 0.481 (A.7)

The complex dielectric constants for ice (εi), solid rock (εr) and air (εa) are 3.2+0.1i,
5.5+0.2i and 1+0i, respectively. The dielectric constant for water (εw) is given by
the Debye Equation

εw = εw∞ + εw0−εw∞
1+(2·π·tw·f)i (A.8)

Where εw∞ is the high frequency limit of the dielectric constant of pure water ( ≈
4.9), εw0 is the static dielectric constant of pure water, tw the relaxation time of pure
water in seconds, and f is the electro magnetic frequency in Hz. Equation A.8 can
be divided in a real and an imaginary part. The real part is defined by Ulaby et al.
(1986), as

ε′w = εw∞ + εw0−εw∞
1+(2·π·tw·f)2 (A.9)

and the imaginary part (ε′′w) as

ε′′w = 2·π·tw·f ·(εw0−εw∞)
1+(2·π·tw·f)2 (A.10)

The static dielectric constant of pure water is given as

εw0 = 88.045− 0.4147 · (T − 273.15) + 6.295 · 10−4 · (T − 273.15)2+
1.075 · 10−5 · (T − 273.15)3 (A.11)

where T is the effective temperature of the emitting layer in Kelvin.
The relaxation time of pure water is

2πtw = 1.1109 · 10−10 − 3.824 · 10−12 · (T − 273.15)+
6.938 · 10−14 · (T − 273.15)2 − 5.096 · 10−16 · (T − 273.15)3 (A.12)
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Appendix B

ACRONYMS AND SYMBOLS

Acronyms

ADEOS-II Advanced Earth Observing Satellite II
AMSR Advanced Microwave Scanning Radiometer
ARS Agriculture Research Service
AVHRR Advanced Very High Resolution Radiometer
BARC Beltsville Agricultural Research Center
CRU Climate Research Unit
DAAC Distributed Active Archive Center
DDC Data Distribution Centre
DMSP Defense Meteorological Satellite Program
EDC EROS Data Center
ENSO El Niño-Southern Oscillation
EROS Earth Resources Observation System
GCM Global Circulation Model
GCIP GEWEX Continental-Scale International Project
GTOPO30 Global 30 Arc Second Elevation Data Set
fPAR fraction of Photosynthetically Active Radiation
FAO Food and Agriculture Organization
GEWEX Global Energy and Water Cycle Experiment
GSFC Goddard Space Flight Center
IPCC Intergovernmental Panel on Climate Change
ISCCP International Satellite Cloud Climatology Project
ISLSCP International Satellite Land Surface Climatology Project
LAI Leaf Area Index
LDAS Land Data Assimilation System
MPDI Microwave Polarization Difference Index
NASDA National Space Development Agency of Japan
NASA National Aeronautics and Space Administration
NCDC National Climate Data Center
NDVI Normalized Difference Vegetation Index
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NOAA National Oceanic and Atmospheric Administration
NSIPP NASA Seasonal-to-Interannual Prediction Project
SEE Standard Error of Y Estimated
R-J Rayleigh-Jeans Approximation
SMMR Scanning Multichannel Microwave Radiometer
SMOS Soil Moisture and Ocean Salinity Mission
SSM/I Special Sensor Microwave Imager
STATGO State Soil Geographic data base
TMI TRMM Microwave Instrument
TRMM Tropical Rainfall Measuring Mission
USDA United States Department of Agriculture
USGS United States Geological Survey
VWC Vegetation Water Content
WCRP World Climate Research Program
W-S Wang-Schmugge Dielectric Mixing Model

Symbols

Γ Microwave vegetation transmissivity [ - ]
γ Empirical parameter in Wang-Schmugge Model [ - ]
ε Dielectric constant of a soil-water mixture [ - ]
ε
′

Real part of the dielectric constant of a soil-water mixture [ - ]
ε
′′

Imaginary part of the dielectric const. of a soil-water mixture [ - ]
εa Dielectric constant of air [ - ]
εi Dielectric constant of ice [ - ]
εr Dielectric constant of rock [ - ]
εw Dielectric constant of water [ - ]
ε
′
w Real part of the dielectric constant of water [ - ]
ε
′′
w Imaginary part of the dielectric constant of water [ - ]
εw∞ high frequency limit of the dielectric constant of water [ - ]
εw0 Static dielectric constant of water [ - ]
εx Dielectric constant of initially absorbed water [ - ]
θ Volumetric water content of the soil [ m3 m−3 ]
θt Transition moisture [ m3 m−3 ]
λ Wavelength [ m ]
τ Vegetation optical depth [ - ]
ω Single scattering albedo [ - ]

a Long term trend [value month−1]
A Seasonal amplitude [value year−1]
A0 Amplitude of the surface temperature [K year−1]
b Constant that depends on vegetation type and frequency [ - ]
c Column number or longitude [ - ]
Cj Fitting parameter for the optical depth model [ - ]
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CLAY Clay content in percent of dry weight [ % ]
d1−3 Fitting parameters for the time series analysis [ - ]
dmean 9-year mean value [ value ]
D Damping depth [ cm ]
ec Above canopy emissivity [ - ]
er Rough surface emissivity [ - ]
es Smooth surface emissivity [ - ]
f Electro magnetic frequency [ Hz ]
g phase-shift or time to peak [ date ]
H Horizontal polarization angle [ - ]
h Soil surface roughness [ - ]
j Polynomial parameter for the optical depth model [ - ]
k Absolute value of the dielectric constant of the soil [ - ]
l polarization angle, H or V [ - ]
M Polynomial parameter for the optical depth model [ - ]
N Polynomial parameter for the optical depth model [ - ]
n number of observations [ - ]
P Porosity of the soil [ m3 m−3 ]
p Precipitation [ mm day−1 ]
Pn Periodicity [ months ]
r Row number or latitude [ - ]
R Surface reflectivity [ - ]
SAND Sand content in percent of dry weight [ % ]
T Effective temperature of the emitting layer [ K ]
Tave Average temperature of the surface [ K ]
Tb Brightness temperature [ K ]
Tc Canopy temperature [ K ]
Ts Surface temperature [ K ]
Ts[zcm] Soil temperature at z cm depth [ K ]
t time [ months ]
td time [ days ]
tw Relaxation time of pure water [ s ]
u Incidence angle [ ◦ from nadir ]
V Vertical polarization angle [ - ]
wd Frequency [ days−1 ]
wn Frequency [ months−1 ]
WP Wilting point of the soil [ m3 m−3 ]
z Soil depth [ cm ]
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